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ABSTRACT

This article addresses the problem of Ultra Reliable Low Latency Communications (URLLC) in wireless
networks, a framework with particularly stringent constraints imposed by many Internet of Things (IoT)
applications from diverse sectors. We propose a novel Deep Reinforcement Learning (DRL) scheduling
algorithm, named NOMA-PPO, to solve the Non-Orthogonal Multiple Access (NOMA) uplink URLLC
scheduling problem involving strict deadlines. The challenge of addressing uplink URLLC requirements
in NOMA systems is related to the combinatorial complexity of the action space due to the possibility to
schedule multiple devices, and to the partial observability constraint that we impose to our algorithm in
order to meet the IoT communication constraints and be scalable. Our approach involves 1) formulating
the NOMA-URLLC problem as a Partially Observable Markov Decision Process (POMDP) and the
introduction of an agent state, serving as a sufficient statistic of past observations and actions, enabling a
transformation of the POMDP into a Markov Decision Process (MDP); 2) adapting the Proximal Policy
Optimization (PPO) algorithm to handle the combinatorial action space; 3) incorporating prior knowledge
into the learning agent with the introduction of a Bayesian policy. Numerical results reveal that not
only does our approach outperform traditional multiple access protocols and DRL benchmarks on 3GPP
scenarios, but also proves to be robust under various channel and traffic configurations, efficiently exploiting
inherent time correlations.

INDEX TERMS Deep Reinforcement Learning, Internet of Things, Multiple Access, POMDP, Proximal
Policy Optimization, URLLC.

I. INTRODUCTION

EW high-demanding use cases pertaining to various

industry sectors need to be addressed by the fu-
ture generations of wireless networksﬂ In particular, the
Third Generation Partnership Project (3GPP) standard [1]]
has defined Ultra Reliable Low Latency Communications
(URLLC) requirements for many Internet of Things (IoT)
use cases such as smart grids, factory automation and intel-
ligent transportation to only name a few. A classical URLLC
reliability requirement is for example to transmit a 32-byte
packet with success probability 1 — 1075 and with a latency
deadline of 1 ms [1]. A deadline is said to be strict if the
packet is lost beyond this delay. URLLC requirements are

IThe work of B.-M. Robaglia and M. Coupechoux has been performed
at the LINCS laboratory (lincs.fr).

particularly challenging on the uplink, i.e., from IoT devices
to a central Base Station (BS), because the BS can acquire
traffic and channel information only at the cost of a signifi-
cant signalling load and delay; a problem related to partial
observability in control theory. In order to reduce latency
and improve reliability, Non-Orthogonal Multiple Access
(NOMA) is seen as a promising transmission technique, as it
allows to schedule multiple users on the same time-frequency
resource and to improve the spectral efficiency [2]. However,
even with NOMA, there is in practice a limited number
of users sharing the same resource and the user selection
issue adds to the complexity of the traditional many-to-
one scheduling problem. In this context, we thus propose
NOMA-PPO, a new Deep Reinforcement Learning (DRL)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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scheduling algorithm to solve the NOMA uplink URLLCfor a given trafc load, see e.g. [8]-[10] and references
scheduling problem with strict deadlines. therein. However, with or without NOMA, all SA-based
approaches suffer from high collision rates when the load
A Related Work or the number of devices increases [11] and fail to take
' . . advantage of the various traf ¢ patterns or channel conditions
1) Uplink URLLC access solutions across the devices
UpI_|nk access schelmes fo: ;JRL:C csn be tdf'v'ded |r][ WO pecent advances in Deep Reinforcement Learning (DRL)
galr? groups, r?amey gt:an i as?j (;an _grarll\l-or&ipro (I;c !PZ] have been applied to solve several limitations in 0T
ROF fapproact T_S can eDT;Ifen ed using or be 9stems [13] and are potential solutions for the aforemen-
einforcement Learning ( ) )- . . tioned problems. Several proposals use Deep Multi-Agent
In the rst set, the scheduling of th_e devu_:es Is performegeintorcement Learning (MARL) to model a user with a
by the_ BS, sez e.g.h [‘Z]'I.[Al]' Devices V\gth al_pl?c_:fﬁt [;,%RL algorithm in order to learn a transmission protocol in
transmit rst send a scheduling request on the uplink. The _e?decentralized manner in the context of dynamic spectrum
ther_1 allocates upllnk resources f(_)r the packet transm'ss!%%ess [14]-[16]. Nonetheless, these solutions do not tackle
Uplink packets may include in their header some scheduli URLLC constraint with strict deadlines and do not take

information (like the buffer status) to avoid the scheduling1t account the potential of NOMA. The approach of [17]

request step. In this case, a scheduling algorithm is require dels the massive access problem by transforming the
at the BS to meet the delay and reliability constrain

- . . tﬁRLLC constraint into a data rate constraint and learns
without losing resources when a polled device has no pac Ftransmission strategy in order to maximize the network

KI) tralgsr;yt. Lgs '53 ﬂ_ll_?] base_lmg pr(t))toclfl ?dr(])pted in 5 nergy efciency using cooperative MARL. However, the
ew Radio (NR) [5]. The main drawback of the approac uthors do not consider strict deadlines and do not address

lies in the duration of the four-way handshake that may, yheoretical limitations of decentralized MARL like the
be incompatible with URLLC constraints. The advamag%’on-stationarity during training

though, is to avoid collisions between device transmlssmn_s.At last, several strategies leveraging DRL have been put

. In the second set of access scher_ne_s, the handshalg[]gto deal with the URLLC constraint in NOMA systems.

is removed b)_/ allowing uplink transmlssmns to t_)e g_rantrhe authors of [18] propose Deep-SARSA to tackle the re-
free (GlF) This megnfs thathdeé/gezvcan tra]:nsrr?lt V&'.'th.o%urce allocation problem at the BS for minimizing the error
an er:(p Icit Comm?” ror(;] the : Gk}) car:j glt: er IStIn;f)robability in uplink transmissions. Yet, the proposed solu-
guis c_ont(:nnoré-Freel an <|:Ior(;tent|o_n- ase ?\C%esl_s'tigh does not take into account the packet arrival processes,
contention-free (also cale sem|-per3|steqt schedu 'ng%sumes full observability of the system and does not impose
the BS pre-allocates periodic orthogonal uplink reSOUrcsict deadlines. Additionally, the work of [19] optimizes
to the devices, so that there are no collisions [6]. WhenaaNOMA based GE protoco’l with DRL. The authors use
deyice has a packet to send, it waits for the next opportuniF L to dynamically adjust the number of repetitions and
This access scheme has been also adopted by 5G NR g io resources in the proactive GF scheme. Nevertheless,

Conten_t i(_)nifree GF is however r_nostly adapted to period{ﬁe approach, which is based on SA, still suffers from a
fjetermln(;_stlc traf c,bbg_tl_b?cot;nes inef cient when the t[)aftlzhi h collision rate as the load increases, is not designed for
!fstf]pora_ icor pri ?tl 'E'C efausz rejlqurces_ rln?yd N hqﬁg ndling both deterministic and sporadic traf ¢ and fails to
![h ere l'f tno pacl € ‘ 0 be S;g ’ ?r h'ei Ines violated, Whelke advantage of channel correlations. A very preliminary
€ packet arrival fate 1s suddenly nigner. version of our work has been presented in [20]. However, the

Several papers have st_ud|ed contention-based GF, a fa Y)posed solution ignores NOMA, does not take into account
of protocols that are versions of Slotted Aloha (SA) enrich annel correlations and is only adapted to probabilistic
with smart retransmission schemes. Contrary to other ap?e'riodic traf

proaqhes, uplinl_< transmissions are i_ndeed he_re subject 1Q, g paper, we consider a system in which the BS semi-
CO"'S'O?S(‘j A t37/p|carl] exami)rl]e of tg's zltse;\a;[urleJésLEr(m:e Wgr_kblindly schedules the devices for their uplink transmissions,
presented in [7], where authors adap 0 URLLL and I it is done in grant-based access, however without the need
dustrial 0T use cases by introducing retransmission SChen?S’Fscheduling requests. Thanks to NOMA, the BS is able to
th‘"ﬁ] depend on _the ttr:afcl pro_lelof :he deY'C.eS‘ In h[8]' oll multiple devices for a transmission in the same resource.
fhu OKrS su?;_marl(z;elz ehcassu_:a rﬁ. ransmssn()jntsc < ' thus tackle a partially observable scheduling problem
N b-rep]? tion f?ﬁ eme, n WkICt a [t)re- e_et:mc:h here the BS should strike a balance between acquiring
number %Fcop|hes ot the srz]i_mhe dpag et are _ransm; edb %eduling information and avoiding excessive collisions.
reactive scheme, In which devices recelve a tee r problem is characterized by two challenges, namely a

from the BS for every transmission; and the proactive Gg,pinatorial action space and a partially observable envi-

scheme, in which a packet is repeatedly sent until a pOSitiV(?nment that conventional DRL algorithms fail to handle.
acknowledgement is received. These protocols have been ’

enhanced using NOMA [2] with the goal of better using
the available resources and reduce the number of collisions
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2) DRL challenges for uplink URLLC

Moreover, the learned beliefs are dif cult to interpret and

First, allowing the BS to poll multiple devices in a frameerror might be propagated to the policy optimization phase.

drastically increases the action space. kodevices, the

An alternative to the belief state is the notionioforma-

decision maker needs to choose betw&&ractions, which tion state[29] or internal state[30, Section 12.4.2]. The idea
is exponential ink. Few solutions have been proposed tis to derive a function of the history which is a suf cient
address this problem in the literature. The most commetatistic for estimating the environmental state. However,
one is proposed in [21]. The authors' idea is to projedgarning such a suf cient representation of the history is
the large discrete action space in a continuous action spalfecult as it is often task-speci c.

and thus solve a continuous action RL problem with the

traditional Deep Deterministic Policy Gradient algorithnB. Contributions and outline

[22]. However, this approach assumes that the discrete actlonthis paper, we formulate the NOMA-URLLC problem
space can be embedded in a continuous space, whichagsa partially-observable scheduling problem and solve it
not straightforward for our Multiple Access (MA) problem.by proposing a DRL algorithm. Our contributions can be
An alternative is the work of [23]. The authors solve aummarized as follows:

high dimensional action space RL problem with a Recurrent
Neural Network (RNN) to sequentially predict the action
vector, one dimension after the other. Nevertheless, not only
does this algorithm assume that we know how to order the
action dimensions, but the Q-value estimated for the last
dimension is very noisy, especially whdnis large. An
extension of this paper is the Branching Dueling Q-Network
(BDQ) [24]. The authors solve a RL problem with la
dimensional action space using a dueling architecture where
there is a value network common for all dimensions &nd
advantage networks, one for every dimension. Yet, not only
is this solution ill-suited to manage partial observability, but
it also cannot account for any prior knowledge the agent
might have regarding the dynamics of the environment.

Second, as the BS is not aware of the whole environment
and takes decisions solely based on partial observations of
the environmental state, our problem can be modeled by a
POMDP [25]. When observations are not Markovian, tradi-
tional RL algorithms work with history dependent policies,
an approach that can be rapidly computationally intractable
as the number of possible histories grows exponentially with
the horizon. A way to alleviate this problem is to introduce
belief statesa probability distribution over the states, which
is also a suf cient statistic for the past history and the initial
state distribution. A POMDP can be then reformulated as
a MDP in which the state space is the continuous belief
state space. Traditional RL methods like Q-learning or policy
gradient algorithms can nally be used on the resulting
belief-MDP [26].

Three main methods are proposed in the literature to
derive or estimate a belief state: 1) the belief update formula
[26], 2) a RNN [27] and 3) a generative model [28].

We formulate a general MA problem with the URLLC
constraint, considering packets with strict deadlines and
NOMA uplink communications as a POMDP.

We introduce the notion ofgent statein order to
theoretically address the POMDP formulation. We show
that the agent state is a suf cient statistic for the past
observation-action history that allows us to 1) express
past actions and observations in a compact way, and 2)
convert the POMDP problem to an MDP and bene t
from the convergence properties of the DRL algorithms.
This transformation can be extended to other wireless
settings where partial observability regarding the buffer
or channel evolution needs to be addressed.

We propose a DRL algorithnlNOMA-PPQ that en-
hances the state-of-the-art algorithm PPO [31] with two
components: 1) a branching policy network architecture
in order to linearly manage combinatorial action spaces.
This idea is inspired by the BDQ architecture [24] and
extended to PG methods. 2) Bayesian policies, that
incorporate prior information about the MA problem
into the DRL agent [32].

We provide numerical evidence that our approach out-
performs traditional MA and DRL benchmarks across
3GPP scenarios in terms of URLLC score, convergence
speed, and fairness. Furthermore, we show that our
algorithm is able to cope with different traf c models, a
deterministic periodic and a probabilistic aperiodic traf-
¢ model in particular. Finally, our algorithm exhibits
robustness against different channel con gurations and
demonstrates a successful exploitation of time-varying
channel informatioR.

However, all these methods suffer from major drawbacks.In Section I, we de ne the system model. Section I
While the belief update formula requires the knowledg®rmulates the POMDP problem. Section IV presents the
of the environment dynamics (transition and observatiddOMA-PPO approach and nally, Section V exposes the
function), using a RNN or a generative model introducegimulations and numerical results.

a new layer of complexity since there are now two phasesNotations: For a nite setX, ( X ) denotes the set of all
involved: the belief estimation and the computation of therobability distributions oveX . The indicator function is de-
optimal policy. Additionally, since Deep Neural Networksnotedlfg, diag( ) is the diagonal operator that transforms a

(DNNs) are black boxes, it is impossible to add any prior—, _ _ o _ _
The code associated with the research presented in this paper is available

knowledge that the agent might have about the environment. =~ o ,
for public access on the following GitHub repository.
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vector in a diagonal matrix and is the Hadamard product.
The matrices are written in bold upper case and the vectors
in bold lower casehi refers to a tuple[ ] to the modulo
operator andargg min(S) returns a set oB elements in
S having the lowest value (ties are broken at random). The
system model parameters are summarized in Table 1, while
those for the algorithm can be found in Table 2.

FIGURE 1: Radio frame structure.
Il. System Model
A. Network Model
We consider a time-slotted wireless network Kof hetero- 1) Received Signal
geneous devices communicating with a BS over a wirelels this model, a devicek 2 U(t), active in framet,
shared channel on the uplink. Every device has a sindtansmits a signaby(t) of power py(t) = E[jsk(t)jj?],
antenna and the BS is equipped with antennas. The time where the expectation is taken over possible symbols. In
is divided into radio frames of duratioik and every frame a general formulation, transmit power could be controlled.
is divided into ve time-slots of durationls (see Fig. 1). However, for the sake of simplicity, this work focuses on
This division represents the minimum time required for thecenarios with a xed transmit power. The BS is supposed
processes of polling, transmitting and acknowledging. The receive the signal with, antennas and to perform Max-
time synchronization among all devices is performed by themum Ratio Combining (MRC). The transmission of uger
BS using downlink signals. During the rst slot of everyexperiences a large scale fadigg(t), which accounts for
radio frame, the BS is allowed to poll a number of devicethe distance-dependent path-loss and shadowing, fast fading
for a potential uplink transmission, described by the vectbr (t) = [hk1(t);  ;hn, (1)]T 2 C"= I and thermal noise

orthogonal resources for uplink pilot transmissions from tha (t);:::; su(t)(t;( and thermal noise:
polled devices. After a guard interval,pmlled device with _ p
at least a packet in its buffer becomastive and transmits rs(t) = » (@ a®sc()+ n(t) (1)
during the third slot. Its transmission includes a pilot signal . v . ) .
for channel estimation, sent using the orthogonal resouré@ereni(t);i =1:::::n4 is an independent qrcularl;zl Sym-
allocated by the BS. Its transmission also includes the buff&etric white Gaussian process with distributoh(0; 71 ).
status of the device. Polled devices without any packet I§1@nks to the orthogonal pilots sent on the uplink, the BS
transmit do not send any pilot and thus leave the allocatiy@ble to estimate the channel realizations of active devices.
resource unused. We assume that all packets have the sEAfEN NOW on, we assume that the BS has a perfect channel
size ofL bits. After a guard interval, the BS acknowledge§tate information for decoding. In MRC, the signals received
the reception of successful transmissions. on the n, antennas are combined using a weight vector

The set of active users at frante2 N is denotedU(t) wyl = hi for devicek. The combined signalk (t) = Wil
and the number of active devices is denotedt), i.e., for devicek is thus:
jU(t)j = U(t). We denote alsai(t) 2 f 0;1gK the vector yk(t) = hy (t)xhk(t) gk(t)sk(t)q+ hi (t)n(1)
of active users at frame such thatuy (t) = 1fk 2 U(t)g. H _ _ . (2)
Besides, we de ne P(t), 2(t), S(t) vectors of sizeK, " 20 nk hic (O (g (Ms; ()

i nf kg

where each componeiit represents the number of frames .
since the last time devick has been polled, active and We assume that BS antennas are suf ciently spaced so that

successfully decoded, respectively. the fading coef cients at t?very antenna are spatial_ly uncorre-
We assume that the system is using NOMA [2] to improv@ted and thusi, CN (0; 1) for all k. The fast fading pro-

the spectral ef ciency of the network. NOMA allows severai:eSShki OF for k=1;:5K andi = 1;:5n,, is supposed
);ollow a time-correlated Gauss-Markov model [35]:

users to use the same frequency and time resources '
superposing their signal in the power domain. At the receiver hei (1) = akh (t 1) + z(t) 3
side, the BS applies Successive Interference CancellatigRere 2 (t) CN (0;1 a2). The fading correlation
(SIC) to decode the superposed signals. coef cient ay is modeled using the Jakes' model [36) =

Jo(2 v f Tt =0, whereJy is the Bessel function of the rst
B. Interference Channel Model kind and order Oy is the speed of devide, f . is the carrier
We adopt a realistic channel model that has been adopfeshjuency,c is the speed of light anti; (0) CN (0;1).
in the literature, based on the evaluation of the Signal-tdhe coherence time for a device moving at speeds
interference-plus-noise ratio (SINR) [33] and the nite blockl; = ¢c<8f.v) [37]. The channels are supposed to be mutu-
length regime, see e.g. [34]. ally independent across devices and constant during a frame

4 VOLUME ,



TABLE 1: System Model Parameters

TABLE 2: Algorithm Parameters

Notation Description Notation Description
K, na Number of devices, number of antennas. s(t), o(t) State and observation &t
Ts, Tt Slot length, radio frame length. B °(t) Observed buffers dt
U(t), u(t) Set and vector of active devicestat o(t) Observed received power ait
sk (1), pk (t) Transmitted signal, power & at t P(t), 2a(t), S(t) | Lasttime the devices have been polled, acti
gk (1), hy (1) Large scale fading, fast fading &fatt successfully decoded.
rs(t) Received signal from active users. a(t) Action of the agent at.
Yk (1) Combined signal fok att. r(t 1) Reward at step 1.
(t) Decoding order permutation. fA Transition function for the agent state.
k(1) Indicator for successful decoding kf B A(t) Buffers representations by the agent.
k(1) Received power fok att. A(t) Last known received power by the agent.
no-SI(t), S'(t) | SINR for k without SIC, with SIC at. ~(t) History of observations and actionstat
k() Error probability ofk att. Policy parameterized by.
n,M (n;) block length, maximum code size. A odV od Advantage and value functions.
B SIC limitation. \2 Value network parameterized by
fi, Np Offset, period of packet generation flr AGAE (1) Generalized Advantage Estimator.
dE, K Head-of-line delay, latency constraint kf Clipping parameter for PPO.
k(tifk; k3 Np) Probability thatk generates a new packettat Discount factor.
K Rate of packet generation kt EDF EDF prior.
B (t), bk (t) Buffer status matrix and vector & att. feh Channel prior.
dh (t) Head-of-line delays of users &t f Bayesian prior over the agent state.
TB,TH Buffer and channel state transition operators. q Posterior policy

power at the BS, as follows:
(following a block fading channel model [38]). We assume

a rich scattering environment with stationary scatterers, as (0 :() v () “)
detailed in [35], [36], [38]. We denoted (1) 2 C"= K where (t) = pc(t)ak(t)jihk(t)jj2. We denote (t) =
the matrix of all channel realizations at timeand T the ( 1(t); (t);:::; « (1)) the vector of received powers. We

evolution process, i.eH (t+1) T H(H (t)). denote °(t) the vector of powers received by the BS
from the active devices, observed at tirhghanks to the

transmitted pilots, i.e., °(t) = diagu(t)) (t).

2) Decoding Order
The SIC decoding order at each frarhecan be seen as3) Signal to Interference plus Noise Ratio

a permutation function (t) over the set of active devices,|n absence of SIC, the signal (2) results in a SINR at the
e, (1) :[1:U@M®] U (t). Foranyi = 1;::5U(t), output of the combiner [39]:

i(t) is the i-th decoded device's index and for aty?2
ut), 1(t) is the rank of usek in the decoding process.
When the BS tries to decode device(t), it has already
tried to decode all devices; (t),..., i 1(t). Each decoding where
might have been successful or not. Lg(t) be the indicator
whether an active devick 2 U(t) has been successfullyof
decoded by the BS ((t) = 1) or not ( x(t) = 0) and

no-SIC _ k(1)
v = P ()
“ ek k(M* 7
i H L2
i (1) = B (g (1) 55
With SIC however, we decode in the decreasing order
k(t), so that part of the interference is potentially
successively removed. The SINR with SIC writes now:

) = ( 12(t);:::; k(1) the vector of all indicators. As
a consequence, the signal received at the BS fro(h) is _ k(t)
: : ec at . ()= X X (6)
subject to the interference of (t), j > i , i.e., from devices @ ) k+ k() + 2
that have not been yet considered for decoding by the BS, (23, (23,
and to the interference ofj (t), j <i whenever ) =0, 1 {z } 1—{2—}

. ) beforek in decoding ord fterk
i.e., from devices that have not been successfully decoded eloreicin decoding order aner

by the BS. whereJ; = fj 2 U(t); ; (t) < *(t)g is the set of
We now assume the decoding order that minimizes tldevices that are considered for decoding befoendJ, =

total transmit power, given target rates on the uplink [37F] 2 U(t); L) > K L(t)g is the set of devices that are

active devices are sorted in decreasing order of their receivgtoded aftek. Note that ; is determined iteratively: we

VOLUME , 5
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are able to compute the SINR of devike only once we In other words, any simultaneous transmission of more than
know the outcome of the decoding for devige2 J;. B packets provokes a collision.
Finally, at framet and for a usek, we can write (t)

as a Bernoulli random variable of parameter (t), i.e.,
4) Achievable Rate with Finite Block Length k() B (1 «(t)) when (9) is satis ed, and (t) =0
As the URLLC messages are often supposed to be vetherwise. The SIC decoding procedure is summarized in
small [40] (in the factory automation scenario for instanceplgorithm 1.
we adopt a nite block-length regime [41] for the calculation
of the achievable rate. In this model, an encoder maps eveligorithm 1: SIC Decoding Procedure
L-bit messagen 2 [1:M] to a codeworcc,, 2 C", where input : U(t), (1)
M = 2L is the size of the message space arid the block output: (t)’= (100): 2(t)::::: (1)
length, also known as the number of complex channel Wy 2 K

gth, also known as the number of complex channel uses)itiajize: (1) = 0; 8k.

Codewords are subject to an average power constraint, i..¢ ;
ig jicmii? = n , where is the received power per £if jU(D] B then ; ;

M m ' ) X 3 foreach k 2 U(t) in decreasing order of (t) do
channel use. The codeword is transmitted over an Average Compute the SINR y(t) using (6) and (1)

Wh|t_e Gaussian Noise channel with noise varianteAt the Compute «(t) using (t) according to (8)
receiver, a decoder maps the channel output to an estimate, Draw (t) from the Bernoulli distribution:
of the message. The average error probability is de ned as «1) B (1 «(t), i.e. decode the packet
"= P[m 6 m]. A codebookfc, 2 C";m 2 [1:M]gand with probabilityl  (t)
a decoder whose average error probability is less thare
called a(M;n;")-code. For given' and n, the maximum
code size is denotet (n;"). Authors of [41] provide a
normal approximation of the maximum achievable code rafe: Traf ¢ Models

r Packets are generated at the devices according to models of

log,M (n:") C() MQ @) (7) either probabilistic periodic traf ¢ or probabilistic aperiodic
n n traf c and are subject to a strict deadline constraint.
where = F; is the Signal to Noise Ratio (SNRP is

the received powerC( ) = log,(1 + ) is the Shannon

capacity, V( ) = 5R+12)2 logs e is the channel dispersion Probabilistic periodic traf ¢

andQ(x) = 1= 2 Xl exp( t2=2)dt. Although (7) is an !N this model, directly inspired by [42], a devikegenerates
asymptotic approximation whemtends to in nity, it is tight Packets periodically everi, radio frames with probability

for n as small a00[41]. When considering a block fading k- Devices are not synchronous, i.e., each device is assigned
channel with channel realizatidn (7) is validconditionnally @n offset parametef 2 [0;Np] such that, at every radio

to the channel realization with = 2%~ In our study, we framet 0, the probability for a devicd of generating a
further treat interference as noise, as it is usually done in tREW Packet is: k(tifk; «k;Np) = ltyn,j=r,g k. Note that
literature [38, Chapter 15], and apply (7) with the SINR i SPeCi ¢ case for this model is theeterministic periodic

(6). As a consequence, a packet of dewicaransmitted at trafc as de ned in [40, Annex A] for various use cases

framet, is not successfully decoded with probability: including for example factory automation, whege= 1 and
r L fx =0 for all k. Periodic transmissions may correspond to
K@ = Q —— C(k() = (8) the periodic update of a position or the repeated monitoring
V( k() of a characteristic parameter [43].

The downlink allocation and the acknowledgment are sup-
posed to be error free.

Probabilistic aperiodic traf ¢

This traf ¢ model is de ned in [40] and is based on the File
5) SIC Limitation Transfer Protocol (FTP) model 3 de ned in [44], however
We de ne an upper limitB on the number of possible with a xed packet length. At every devick, packets are
multiplexed users which is characteristic of the SIC perfogenerated according to a Poisson process of rateAn
mance [37]. More speci cally, a necessary condition for aperiodic transmission may correspond to process, diagnostic
devicek to be decoded is that the number of active devic&s maintenance events that trigger the transmission [43].
is less tharB, i.e.

jumi B 9) _
Deadlines
3Note that contrary to [41], which considers the capacity per re&very devicek has an individual latency constraint 2 N

dimension, we use a complex representation of the signal. As a consequesspressed in number of radio frames, such that a packet that
C is the capacity per complex dimension [37, Chapter 5]. has not been transmitted aftgrradio frames is dropped. Let
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=maxk k. When a transmission fails, a device is allowe@&. POMDP Formulation

to retransmit the packet as long as it has not expired.  To solve our problem, we adopt the POMDP framework, see
e.g. [25], [26]: at every time step an agent interacts with
the environment by taking an action, gets an observation

Buffers from the environment and obtains a reward.

We assume that devices have an in nite buffer and packets in

the queue are delivered in a “ rst come, rst served” mannebe nition 1 (POMDP):

For every devicd, the buffer at time can be represented byA POMDP can be described by a tup®, A, T, R, , O),

a vectorby (t) = [be1(t); ;b (1)) 2 N wherebeq(t) = i where

when devicek hasi packets with time-to-deadling at time

t. We denoteB (t) the matrix of all buffer status at time

The head-of-line delayl] (t) of userk at framet is de ned

as begn () (t) 6 0 andbeq(t) = 0 for all d < di(t) if it

has at least one packet in its buffer. This is the smallest

time-to-deadline in the buffer of devide. We noted" =

S is the state space, i.e., a nite set of environmental
states,
A is the action space, i.e., a nite set of actions,
T :S AT7! ( S) is the transition function which is
a probability distribution over the next environmental
states® when it was in state and the actiora has been
taken. It veri es the Markov propertys® T (js(t) =
s;a(t) = a),
R :S A7! Ris the reward function, wherR (s; a)
is the immediate reward by taking acti@nin states.
We denoter (t) the immediate reward at time

is the observation space, i.e., a nite set of observa-
tions,
O :S A7l () is the probability distribution of
the observatioro when the environment is in stag®
and the agent has taken actiano O (js(t +1) =
s a(t) = a).

a device is polled and has at least one packet to transmit, it
chooses for transmission one of the packets associated to its
head-of-line delay at random.

For a devicek, the buffer status transits as follows: (a)
Successfully decoded packets are removed from the buffer,
e begny 21(t+1) = begny(t) 1if () = 1; (b)
Other packets see their time-to-deadline decreased by one,
i.e., beg 1(t+1) = beg(t) foralld > 1. If d = 1, the
packets expire and are removed from the buffers; (ahIf
new packets are generated at the device, they enter the buffer
with a deadline i, i.e.,b. , (t+1)= m.

! ke
We denote this operation®, i.e., The history ~(t) at timet is de ned as the sequence of

B(t+1) T B(B(@); (1) (10) actions taken by the agent and observations from the en-
vironment~(t) = fo(0);a(0);o0(1);a(1);:::;;a(t 1);0(t)g,
When an active device is successfully decoded, its buffgherea(t) 2 A ando(t) 2  for all t. The agent makes

status is known (or observed) to the BS. When a devicedscisions using a stochastolicy that is a distribution
polled and yet has no packet to transmit, it does not transmifer the actions knowing the history.

its pilot so that the BS is informed that its buffer is empty. The POMDP related to our problem consists in the fol-
We denoteB °(t) the matrix of observed buffer status atowing components.

time t.
IIl. Problem Formulation 1) State space
A. Optimization Problem At each stept, a states(t) is de ned as the concatenation

The objective of the BS is to maximize the expected numbef the buffer statusB (t), the received powers (t), and
of successful transmissions with respect to the stochadfie observatioro(t) obtained from the active users at the
policy that maps the current observation history at framgrevious step:

to schedule(t). Moreover, buffers and channels are subject s(t) = mB(t); (t);o(t)i (11)
to the dynamicd ® andTH , respectively. The optimization _ _ _ _ _
problem (P) can thus be formulated as: whereo(t) = u(t 1), (t 1);B°(t 1) °(t 1)ir(t

3 1)i is the vector of active users, the vector of decoded
packets, the observed buffers, the observed received power
max E 4 b e(t)d and the reward at 1 respectively.
(TB;TH; ) t=0 k2U (1) ®)

stB(t+1) T B(B(1); (1)

Ht+1) T H (H (1) 2) Action space
The agent has the possibility to poll any subset of devices

where 2 [0;1) is the discount factor that determines that every frame. The action space is thus de nedAas
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polls devicek andax = 0 otherwise. Note that the action At the beginning of each frame 1, we de ne theagent
space grows exponentially with the number of devices. stateA (t) after the agent receives its observatm(t) as:

A(t)= BA(); A(); P(t); 2(t); S);r(t  1)i; (15)

3) Transition function where P(t), 2(t) and S(t) are the number of frames
When the system is in statg(t) at the beginning of a from t since the last time the devices have been polled,
radio framet, it transits to states(t + 1) at the end of active and have successfully transmitted respectivetyt)
the radio frame. The received powe(t) evolves with the is the last known received power of the active devices, i.e.,
channel realizationsi (t) and is governed by ™. Finally its k-th column is (t 2(t) 1). The matrix BA(t)
the evolution of the buffers is described By . The next is a representation of the buffers given the observations
observationo(t + 1) is computed using the observatiormade by the BS at timé and is de ned as follows. If an
function de ned in the next subsection. active uselk has been successfully decoded in the previous
frame, we updatebf (t) with the new observation, i.e.,
b (t) = b2(t 1). For all devices, we decrease the deadlines
4) Observation space and observation function of the packets in the buffers representation at ttmel by
At every framet, the RL agent can only observe the last and we remove the expired packets.
feedback from the active users: the set of active users,
their channel realizations, the buffer status of successfullyWhile B °(t) is an immediate observation of the buffers of
decoded devices and the reward. From the stéite 1) and the active users at B A (t) is a compact representation of all
actiona(t), the observation at time+ 1 is deterministic and past buffer observations atIntroducingB * (t) allows us to
de ned by: incorporate the knowledge of the dynamics of the buffers in
_ ) the agent. Yet, the agent is still not aware of the new arrivals.
o(t+1)= O(s(t+1);a() (12) To summarise, the agent state at fram (t), can be written
= hu(t); (1);B°(t); °(t);r(t)i  (13) as afunctiorf A of the observatiom(t), the previous action
In particular, (1) B (1 (1), B°(t) = diagu(t) a(t 1) and the previous agent stadg(t 1), i.e.,
(t))B(t) and °(t) = diagu(t)) (t). Note that when a A(t)= fAA(t 1)o(t);a(t 1)) (16)
devicek is active but its packet is not decoded, the agent still
has the information that this device has a packet to transmpiipposition 3.1:

throughuk (t) = 1. A is a suf cient statistic for the action-observation history,
ie.,
P(s(t)j~(t)) = P(s(t)jA(t 17
5) Reward function (s()i~(t) (s(H)iA(t) (17)
We de ne the reward function as the number of successfully,q -

decoded packets: « See Appendix A. [ |
R(s(t);a(t)) = k() (14)

k2U (t) Proposition 3.2:

, _ The tuple (S*;A;TA;RA) forms an MDP whereT A :
Note that unlike most RL approaches for multiple access A 7| ( SA) is the agent state transition function

[14], [15], [45], we do not penalize the agent when there ig,jpa . gA A 71 R the agent state reward function such
a collision or interference. The reason is that we want ﬂﬂﬁat:

agent to learn a tradeoff between sensing and transmitting. X
In our experiments, we have noticed that using a penalty for T* (A (t);a(t)) = fA(A(t);a(t); ot + 1))
collisions did not improve the performance. o(t+1) 2

The POMDP formulated above aims at maximizing the P(o(t + 1)ja(t); A(t))
optimization problem (P). In general, POMDP problems are X
known to be PSPACE-Complete [46], which means that they RA (A (t), a(t)) — P(S(t)JA (t)) R (S(t), a(t))
can be solved using a polynomial amount of memory space
and are at least as hard as every other PSPACE problem. In
order to solve this POMDP, we introduce a suf cient statisti?here: X
for the history of past actions and observations, that we call p (ot + 1) ja(t); A (1)) = O(o(t + 1) js; a(t))
the agent stateand that allows us to transform the POMDP s
problem into an MDP.

s(t)2S

T(s(t+1)js;a(t))

s2S
C. Agent state for Solving a POMDP

De nition 2 (Agent state): Proof:
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and is de ned by:
A (s(t);a(t)) = Q «(s(t);a(t)) VvV «(s(t)) (19)

It describes the valu® °9(s(t);a(t)) of an actiona in a
states compared to the value of the stade @4(s(t)) (how
much better or worse it is to take this action). The estimated
advantage function, notel can be computed according to
several methods that can be found in [48]. The most ef cient
method, which is also the one we adopt in NOMA-PPO,
is the Generalized Advantage Estimation (GAE) algorithm
[48]. This algorithm uses the temporal difference residuals

V() = r(t) V (s(t+1) V(s(t)) in order to de ne
the Generalized Advantage Estimatdi®AE (t):

p 3
ARE ()= ( oae) V(t+1) (20)
1=0
where gag 2 [0;1] adjusts the bias-variance tradeoff.
This method manages to reduce the variance of the gradient
estimate and stabilizes training at the cost of introducing a
bias. In practice, the value function is approximated by a
DNN with parameters : V. .
FIGURE 2: Formulation of the NOMA-URLLC problem.
B. Exploiting Prior Knowledge
In our scheduling problem, the Earliest Deadline First (EDF)
scheduler, which schedules pending packets in the increasing
order of their deadline, intuitively is a good heuristic when
the environment is fully observable by the scheduler. EDF
is indeed known to be optimal in various deterministic [49]
1) Atthe beginning of frame, the system is at statft). and stochastic (see e.g. [50]) settings. We thus adapt it to
2) The agent can obsengdt) = O(o(t)js(t);a(t 1)). NOMA as follows: given the devices' buffer§ (t), EDF

The expressions of A andR” are directly derived using
the law of total probability and the Bayes formula. =
The problem formulation is summarized in Fig. 2.

3) It then computes the agent state using (16). schedules th® users with the smallest head-of-line delay

4) It makes an actioa(t)  (a(t)jA(t)). di (v).

5) The system then transitions to the next state as fO||0V\§DF( B(t)=(aw:: ak): 1)
s(t+1) T (s(t +1)js(t);a(t)) and the agent . L o
receivesR(s(t); a(t));u(t); (t); °(t);B°(t). wherea, = (1) gtri:ef Vﬁgges min(fd] (t);:::; dg ()9)

Transforming the POMDP problem in an MDP allows us Note that in our POMDP problem, EDF cannot be im-
to leverage DRL algorithms in order to solve the optimizagslemented in practice, as it requires full observability of

tion problem (P). the system, but can serve as a valuable benchmark. We can
further allow the scheduler to take into account the channel
IV. Deep Reinforcement Learning Approach state, by introducing a prior regarding the channel quality. In
A. Proximal Policy Optimization algorithm particular, we de ne a prior on the chanrfg, as follows:
The Rroximal Eolicy Optimizat'ion (PPO) algorithm [31] is fon( (1); ®)=(aw::ak); (22)
a Policy Gradient (PG) algorithm that benets from the 0 if and 2
Trust Region Policy Optimization policy update [47] while whereay = 1 othle(zrwise k
being data ef cient. The idea is to restrict the amplitude )
of the policy update in order to improve training stabilityvhere 0 and 0 are hyperparameters to determine
while only using rst-order optimization. PPO maximizesth€ quality of a channel. Typically, is the threshold that
the following objective with respect to parameters indicates when a user will not be decoded with a high
probability, regardless of the others' channels ands the
, (@JS) A worcr an- . coherence time that indicates whether the last information
Esia ( gg7) MIN 0|d(ajs)A (s:2);g( )A *(s:a) we have on the channel is relevant or outdated. The intuition

) (18)  behind this prior is that a user should remain inactive if it
with g( ) = clip old((?j?)il ;1+ and 2 [0;1) a experiences a very “bad” channel.
hyperparameter that indicates how far away the new policyThe resulting priorf is thus a combination of the EDF

can deviate from the old oné °¢ is the advantage function and channel prior:
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f(a;A)= EDF (B(1)) fe( (1); %) (23)

In order to incorporate this prior knowledge into the RL
agent, we introduce a Bayesian policy inspired by [32]. We
express the posterior poliayajA; ) as a function of the
prior over the agent stafga; A) and the task speci ¢ policy

(ajA; ) parameterized by with the Bayes rule:

a@A; )/ (ajA; ) f(aA) (24)

C. Algorithm Overview and Architecture

The neural network architecture is described in Fig. 3.
NOMA-PPO uses two neural networks, one for the policy
and one for the critic. The input vector is the concatenation
of the preprocessed buffer informatidh” (t), the timing
information 1= P(t), 1= 2(t), 1= 3(t), the channel infor-
mation A(t) and the last reward(t 1). Its size is thus
5K +1.

Following a branching architecture, the policy network
produces activation probabilities for each user, yieldihg
outputs:  (ajA) = ( (aujA); (azjA) it (axjA)).
Inspired by the BDQ architecture [24], which employs this
approach for Q-learning, we handle the combinatorial action
space in a manner that scales linearly with the number of
users and adapt it to the PPO algorithm. ThEseutputs
are then coordinated by a rst block of hidden layers that are
shared by albranches This design balances the complexity
of the model with the need to capture inter-dependencies FIGURE 3: Architecture of the NOMA-PPO agent.
among actions. While the single-layer branches simplify the
model and enhance ef ciency, the shared layers ensure that
the critical inter-dependencies of our scheduling problem are

captured. made of ve time-slots T = 5Ts), whose duratiorilg is

On the other hand, the value network follows the samguivalent to an OFDM symbol in NR. It can be decomposed
architecture of the policy network, except that it outputs @to an information part of duratiofi; and a cyclic pre x of
single value for the state value estimation. The procedu@rationT,,, which both depend on the subcarrier spacing
for training NOMA-PPO is developed in Algorithm 2. The . T, = T, + Tep With T = 1= f. From the signal
training process for the algorithm consists of two phases: gandwidth we substract the subcarriers dedicated to uplink
initial of ine training using synthetic data until satisfactorypjjots, so that, when there afd polled devices anch,,
performance is achieved, followed by the deployment in thgiots per device, the number of complex channel uses is
real environment where continuous updates of the poligy= (v n,U f)T; [37, Chapter 5]. The number of pilots
and value network are performed in parallel, based on dgar device can be obtained as followss: = dW=W,e, where
collected during operation. Note that it is required to havg/, = 1=(2T,) [37, Chapter 2] is the coherence bandwidth
a stationary environment across the initial training and thgd T, is the delay spread.
operation phases in order that the learmning algorithm canregarding the traf c model, we consider either a deter-
ef ciently exploit the training data. Moreover, as systemministic periodic trafc with period1= or a probabilistic
parameters evolve or change, pe”0d'0_ maintenance or fgeriodic traf ¢ with average inter-arrival tinte= . A packet
training of the algorithm is necessary, either on a schedulggh be decomposed into an information part of lerigtha

basis or when a decline in performance is observed.  header part of length,, and a buffer description of length

Ly, so thatL = L + Ly + Ly. In URLLC, headers cannot
V. Experiments indeed be neglected with respect to the message length. We
A. Simulation Settings and Implementation Details assume that the information part, the header and the buffer

Simulations are conducted at the MAC layer. Our simulatianformation are jointly encoded [60]. The traf c parameters
settings (see Table 3) adopt the parameters of the factofyTable 3 are taken from the factory automation use case of
automation use case of the 3GPP 5G NR speci cations &elease 16 [40]. On the downlink, the poll packet includes
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Algorithm - 2: NOMA-PPO for URLLC uplink TABLE 3: Network Simulation Settings.
scheduling in NOMA systems.

- — - Parameter Notation Value
1 Input: prior f, initial parameters of the policy Carrier frequency fo 2 Ghz
nerork , and the value network: ; Bandwidti W 38:16 MHz
2 for =120 ;‘_J do . Subcarrier spacing f 30 kHz
3 Ruq the posterlor policg ; and collect a set of Delay spreal T4 100 ns
trajectories ) OFDM symbol information part T; 3333 s
F(AB(D);  (@p(t)iA b)) To(t)) t=1 T Gb=1 - OFDM symbol cyclic pre »¥ Tep 2:34 s
4 |Compute the rewarBs-to-g%b(t) for each SIC limitation B 3
trajectory:Rp(t) = {o., " rp(t9 Information length Li 32 bytes
5 |Compute the value¥ ; (Ap(t)) using the value Header8 length Lh 46 bytes
network. Buffer informatiorf Ly 14 bytes
6 |Compute the advantage estima&gAE (t). Average inter-arrival rate 1= 2ms
7 |Update the policy network by maximizing (18) with Period in proba. periodic trafc|  Np 2 ms
the Adam algorithm [51]: Deadline 1ms
X X Network layout 0 50 120 m?
j+1 = argmax — min (25) Noise Power Spectral Density| No 174 dBm/Hz
p=1 t=1 14 BS noise gure Ng 5dB
i BS antenna height iy 3m
MASAE (t); of )A\bGAE (t) BS antenna gain Gyp 5 dBi
J (ab(t)JA b(t)) BS number of antennas Na 4
8 Update the value network by minimizing the Device transmit power p 23 dBm
mean-squared error with the Adam algorithm: Device antenna height fig 1:5m
1 X X 5 Device .antenna gain Gy 0 dBi
' [+1 =arg min o+ V (Ap(1) Qb(t) Device speed \Y 3 km/h
b=1 t=1 aFor a channel bandwidth of 40 MHz, the signal occupies
(26) 38.16 MHz after having excluded guard bands [52].

b Typical delay spread for an indoor hot-spot scenario with
carrier frequency 4 GHz [40].

¢Normal cyclic pre x duration for symbols not at the start or
in the middle of the subframe [53].

€Size of an array of siz&6 corresponding to a maximum
deadline of56 frames, i.e. 10 ms, with 3 bits entries giving
the number of packets for every deadline.

d Headers include 2 bytes of CRC [54], 1 byte for MAC [5],
0 byte for RLC [55], 2 bytes for PDCP [56], O byte for
SDAP [57] and 40 bytes for IPv6 [58].

grows linearly with the number of devicéé and remains
reasonable given the number of considered devices and the
bandwidthW available on the downlink. In the numerical
experiments, we consider up & = 40 devices for a

BS, which is consistent with 3GPP URLLC performance
evaluations [40].

For realistic numerical experiments, we partly adopt the
scenario proposed in [40, Table A.2.2-1] for the factory
automation use case, with a single BS. The network layout is
arectangle of sizé¢ % the BS is positioned at its center afparameters are given in Table 3. We express the deadlines
a heighthy, and serves devices, each at heigfand moving and inter-arrival time in term of frames. Indeed, given the
with velocity v. Devices are uniformly distributed within theframe durationT;, we can deduce that the average inter-
network area. Devices and BS benet from antenna gaiasrival time of 2 ms corresponds id:2 frames and that the
Gp and G4 respectively. For a speed @f = 3 km/h, we deadline ofl ms to5:6 frames.
obtain a coherence time df, = cH8f.v) = 11:2 ms, The parameters of the DRL algorithms are given in
which corresponds t63 radio frames. We choose an episod&able 4. We preprocess the agent state as follows. In order to
length of200frames that allows us to consider speeds belorgduce the dimension of the buffer information, the matrix
1 km/h. The path-loss model is the ITU InH NLOS [61].B A (t) is transformed into a vector of siz€ of head-of-

In such an environment, the correlation distance is betwelame delays for each agent. In order to improve stability
a quarter and three quarters of the wavelength [62], i.ef, speed up training, we normalize®; 2; S between O
betweenl:8 and5:6 cm in our scenario. It is thus possible toand 1 by takingl= P;1= 2;1= S, The channel threshold
obtain independence between the antennas by spacing thenis calculated using (8) such that the error probability
a few centimeters apart. The BS has a noise ghNie, so in absence of interference corresponding tois equal to
that the noise power is2 = NoWNg, whereNg is the 10 °. Finally, note that the history lengtki - scales in our
noise power spectral density. Typical values for the chanr®{periments with the number of devic&. This choice
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the RL agent is the set of combinations Bfor more

TABLE 4: Parameters of the DRL algorithms. devices to poll.

Parameter Value Branching DQN (BDQ): this baseline is a version
Input size Hin ) 5K +1 of the Dueling Double DQN algorithm from [24] that
Hidden size () 256 uses a branching architecture in order to handle a
Discount factor () 0.3 combinatorial action space.

Learning rate actor 10 4 iDRQN-NOMA : This baseline is a fully distributed
Learning rate critic 10 3 Multi-Agent Reinforcement Learning (MARL) algo-
Batch size 128 rithm for grant-free multiple access that follows the
History length K -) K solution of [15] where each device is modeled by a
Episode lengthT) 200 slots Deep Q-network and decides to access the medium
Training length §) | 10k episodes based on its local information: the state of its buffer and
Activation functions RelLU its channel state. This baseline uses a RNN, a Gated
Number of seeds 5 Recurrent Unit (GRU) layer [63] in particular, as it
GAE 0.95 is a standard approach to tackle partial observability.

Additionally, we extend the work of [15] to NOMA
systems by adapting the reward function as follows: at

has been experimentally found to provide a good tradeoff ne end of every framg every usek receives the same
between computational ef ciency and model performance. reward:

P - .
k - — iuq i(t) ifFjUMj B
URLLC score RE(sk(t); a (1) 1 otherwise
In order to compare our algorithm to the traditional bench- _ _ o (27)
marks, we de ne theURLLC scoreas the number of suc- NOMA-PPO-no-prior : This baseline is the proposed

cessfully transmitted packets over the number of received @approach, however without using prior information over
packets. In the following experiments, the URLLC score is  the agent state.

computed over 500 episodes which corresponds to approx- NOMA-PPO-no-agent-state this approach is our
imately 2 10° generated packets according to the trafc ~ NOMA-PPO algorithm without the agent state. It deals
parameters in Table 3. Therefore, a URLLC score of 1 means With partial observability using the action observation
that the reliability is greater thah  10°. history as the input to the policy. It then processes it

using a recurrent neural network (RNN) [27].

B. Benchmarks In order to be fair in the experiments, we modify the frame
For all baselines, when the BS receives two or more packetgucture of the two grant-free approaches SA-NOMA-SIC
at the same time, we use the SIC procedure describedatid iDRQN-NOMA and divide it into four time-slots of

Section B to decode the packets. durationTs: an uplink transmission symbol, a guard symbol,

12

Random Scheduler This scheduler schedules a subsét downlink ACK/NACK and a guard symbol.

of B devices uniformly at random.

EDF: This scheduler schedules pending packets in tifie Study of the Channel Model

increasing order of their deadlines, see (21). Agaiin this section, we study the behavior of the channel. In
it cannot be implemented in practice on the uplinkig. 4a, we show the channel error probabilitgs a function
because of the assumed full observability of the devicd the distance between a device and the BS, involved in
buffers. a point-to-point transmission without interference. Results
SA-NOMA-SIC: This baseline is a grant-free approaclare shown for different number of antennas at the BS and
that follows the work of [9]. It combines SA with SIC. with or without the pilot signals. We see that there are
At each frame, devices transmit their packet with theoughly three regimes that can be distinguished. When the
same probabilityp. Regarding re-transmissions, we useistance is small, the error probability is very small (less
the proactive scheme [8]: a user can re-transmit th¢han 10 °). When the distance to the BS is too large, the
same packet with probabilitp until it is delivered or error probability is close td. In this regime, there is no
expired. The probability is empirically optimized such hope to guarantee URLLC requirements. In an intermediate
that the URLLC score is maximized for every scenariaegime that depends on the number of antennas and the
RDQN-NOMA Scheduler: The standard DQN algo- number of decoded devices, the error probability is not
rithm proposed by [27] is the traditional approach tmegligible but the URLLC requirements could be met with
solve POMDP problems. The idea is to use an RNBIn appropriate scheduling. In this case, the SINR model
to handle partial observability. We directly apply thids required to bene t from the channel evolution for every
algorithm in order to solve (P). The action space dalevice. As expected, increasing the number of antennas at the
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mance closely aligns with NOMA-PPO-no-agent-state. This
suggests that utilizing the agent state achieves the same
bene ts as managing partial observability with a RNN, but
with reduced complexity. However, we can see that training
NOMA-PPO-no-agent-state is longer, primarly due to the
higher number of parameters in the GRU layer.

Fourth, while the MARL grant-free approach, iDRQN-
NOMA, reaches the second best optimum in terms of
URLLC score, it converges slower than NOMA-PPO and
with a larger variance. This can be accounted for by the
fact that agents must coordinate independently, solely us-
ing the BS's feedback. Furthermore, we observe that the
DRQN-NOMA scheduler does not manage to converge
due o the combinatorial action space. Indeed, there are
2 7 2t % =261;972possible actions fok = 18 and
B = 3, thus choosing the appropriate action is challenging.
In light of the lack of convergence of this algorithm, we
exclude it from future experimental baselines. Finally, we
observe that the BDQ algorithm comes third in term of
asymptotic URLLC score but suffers from high variance. We
notice that for the DRQN-NOMA scheduler and iDRQN-
NOMA, the score does not evolve in the rst thousand
episodes. It is because of the “warm up” stage where we
collect trajectories in order to |l the replay buffer of the
agents without updating them.

(a) For a single deviceK( = 1)

E. Performance in the 3GPP Scenario
In Fig. 5, we study the performance of our algorithm in the
3GPP scenarios with two different traf c models. On the one
_ hand, we study in Fig. 5b the evolution of the URLLC score
(b) For three devices after SI&(=3) as a function of the number of devices on the deterministic
_ periodic trafc and on the other hand, the evolution of
FIGURE 4: Packet error probability as a function of the the URLLC score and the Jain's Index on the probabilistic
distance to the BS. aperiodic trafc in Fig. 5¢ and Fig. 5d respectively. The
. L . Jain's index is computed with the URLLC scores.
BS improves the reliability. At last, reserving some resource .
. 7 We observe that our approach, NOMA-PPO, consistently
for pilots has a negligible in uence on the performance. : i
. i ._outperforms all benchmarks in URLLC score and fairness
In Fig. 4b, we show the error probability as a function : . . .
g . across various scenarios, with the exception of the EDF
of the distance of the three devices from the BS. The threg . .
. o . Scheduler, which bene ts from full observability over de-
devices transmit simultaneously to the BS, which performs_ " : . .
: - vices' buffers. This superior performance can be explained
SIC. The resulting error probabilities are shown for the rstb ) o .
. : . )y our technical contributions to better handle partial observ-
second and third decoded signals respectively. We agal

observe the three regimes, however with an offset accordi%ﬁ'“ty and the combinatorial action space, augmented with
or knowledge.

to the rank of decoding. The intermediate regime ranges hgrqndeed we rst observe that our proposed solution sur-

approximately betwee@50m and300 m. passes the BDQ algorithm, particularly in high-density
device scenarios, where it often converges to suboptimal
D. Convergence Analysis policies. While BDQ can handle large action spaces, its
In Fig. 5a, we show the evolution of the URLLC scorenability to effectively manage partial observability leads
during the training of 18 learning agents under the prole the convergence to suboptimal policies as the number
abilistic aperiodic traf c. First, we can see that NOMA-of users increases. In contrast, NOMA-PPO successfully
PPO converges the fastest and with the smallest variamogigates the issues of partial observability thanks to the
to its asymptotic value. Second, we see that not only doietegration of the agent state.
the prior help NOMA-PPO reach a better optimum, it also Regarding grant-free methods, we observe distinct behav-
increases the convergence speed and reduces the variaiocge under different traf ¢ patterns. For instance, the iDRQN-
Third, we can observe that NOMA-PPO-no-prior's perforNOMA algorithm struggles to converge with 30 devices and
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