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ABSTRACT
This article addresses the problem of Ultra Reliable Low Latency Communications (URLLC) in wireless
networks, a framework with particularly stringent constraints imposed by many Internet of Things (IoT)
applications from diverse sectors. We propose a novel Deep Reinforcement Learning (DRL) scheduling
algorithm, named NOMA-PPO, to solve the Non-Orthogonal Multiple Access (NOMA) uplink URLLC
scheduling problem involving strict deadlines. The challenge of addressing uplink URLLC requirements
in NOMA systems is related to the combinatorial complexity of the action space due to the possibility to
schedule multiple devices, and to the partial observability constraint that we impose to our algorithm in
order to meet the IoT communication constraints and be scalable. Our approach involves 1) formulating
the NOMA-URLLC problem as a Partially Observable Markov Decision Process (POMDP) and the
introduction of an agent state, serving as a sufficient statistic of past observations and actions, enabling a
transformation of the POMDP into a Markov Decision Process (MDP); 2) adapting the Proximal Policy
Optimization (PPO) algorithm to handle the combinatorial action space; 3) incorporating prior knowledge
into the learning agent with the introduction of a Bayesian policy. Numerical results reveal that not
only does our approach outperform traditional multiple access protocols and DRL benchmarks on 3GPP
scenarios, but also proves to be robust under various channel and traffic configurations, efficiently exploiting
inherent time correlations.

INDEX TERMS Deep Reinforcement Learning, Internet of Things, Multiple Access, POMDP, Proximal
Policy Optimization, URLLC.

I. INTRODUCTION

NEW high-demanding use cases pertaining to various
industry sectors need to be addressed by the fu-

ture generations of wireless networks1. In particular, the
Third Generation Partnership Project (3GPP) standard [1]
has defined Ultra Reliable Low Latency Communications
(URLLC) requirements for many Internet of Things (IoT)
use cases such as smart grids, factory automation and intel-
ligent transportation to only name a few. A classical URLLC
reliability requirement is for example to transmit a 32-byte
packet with success probability 1− 10−5 and with a latency
deadline of 1 ms [1]. A deadline is said to be strict if the
packet is lost beyond this delay. URLLC requirements are

1The work of B.-M. Robaglia and M. Coupechoux has been performed
at the LINCS laboratory (lincs.fr).

particularly challenging on the uplink, i.e., from IoT devices
to a central Base Station (BS), because the BS can acquire
traffic and channel information only at the cost of a signifi-
cant signalling load and delay; a problem related to partial
observability in control theory. In order to reduce latency
and improve reliability, Non-Orthogonal Multiple Access
(NOMA) is seen as a promising transmission technique, as it
allows to schedule multiple users on the same time-frequency
resource and to improve the spectral efficiency [2]. However,
even with NOMA, there is in practice a limited number
of users sharing the same resource and the user selection
issue adds to the complexity of the traditional many-to-
one scheduling problem. In this context, we thus propose
NOMA-PPO, a new Deep Reinforcement Learning (DRL)
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scheduling algorithm to solve the NOMA uplink URLLC
scheduling problem with strict deadlines.

A. Related Work
1) Uplink URLLC access solutions

Uplink access schemes for URLLC can be divided in two
main groups, namely grant-based and grant-free protocols.
Both approaches can be extended using NOMA or Deep
Reinforcement Learning (DRL).

In the �rst set, the scheduling of the devices is performed
by the BS, see e.g. [3], [4]. Devices with a packet to
transmit �rst send a scheduling request on the uplink. The BS
then allocates uplink resources for the packet transmission.
Uplink packets may include in their header some scheduling
information (like the buffer status) to avoid the scheduling
request step. In this case, a scheduling algorithm is required
at the BS to meet the delay and reliability constraints
without losing resources when a polled device has no packet
to transmit. This is the baseline protocol adopted in 5G
New Radio (NR) [5]. The main drawback of the approach
lies in the duration of the four-way handshake that may
be incompatible with URLLC constraints. The advantage,
though, is to avoid collisions between device transmissions.

In the second set of access schemes, the handshaking
is removed by allowing uplink transmissions to be grant-
free (GF). This means that devices can transmit without
an explicit command from the BS. We can further distin-
guish contention-free and contention-based GF access. In
contention-free GF (also called semi-persistent scheduling),
the BS pre-allocates periodic orthogonal uplink resources
to the devices, so that there are no collisions [6]. When a
device has a packet to send, it waits for the next opportunity.
This access scheme has been also adopted by 5G NR [5].
Contention-free GF is however mostly adapted to periodic
deterministic traf�c, but becomes inef�cient when the traf�c
is sporadic or probabilistic because resources may be lost,
if there is no packet to be sent, or deadlines violated, when
the packet arrival rate is suddenly higher.

Several papers have studied contention-based GF, a family
of protocols that are versions of Slotted Aloha (SA) enriched
with smart retransmission schemes. Contrary to other ap-
proaches, uplink transmissions are indeed here subject to
collisions. A typical example of this literature is the work
presented in [7], where authors adapt SA to URLLC and in-
dustrial IoT use cases by introducing retransmission schemes
that depend on the traf�c pro�le of the devices. In [8],
authors summarize the classical retransmission schemes:
the K-repetition GF scheme, in which a pre-determined
number of copies of the same packet are transmitted; the
reactive GF scheme, in which devices receive a feedback
from the BS for every transmission; and the proactive GF
scheme, in which a packet is repeatedly sent until a positive
acknowledgement is received. These protocols have been
enhanced using NOMA [2] with the goal of better using
the available resources and reduce the number of collisions

for a given traf�c load, see e.g. [8]–[10] and references
therein. However, with or without NOMA, all SA-based
approaches suffer from high collision rates when the load
or the number of devices increases [11] and fail to take
advantage of the various traf�c patterns or channel conditions
across the devices.

Recent advances in Deep Reinforcement Learning (DRL)
[12] have been applied to solve several limitations in IoT
systems [13] and are potential solutions for the aforemen-
tioned problems. Several proposals use Deep Multi-Agent
Reinforcement Learning (MARL) to model a user with a
DRL algorithm in order to learn a transmission protocol in
a decentralized manner in the context of dynamic spectrum
access [14]–[16]. Nonetheless, these solutions do not tackle
the URLLC constraint with strict deadlines and do not take
into account the potential of NOMA. The approach of [17]
models the massive access problem by transforming the
URLLC constraint into a data rate constraint and learns
a transmission strategy in order to maximize the network
energy ef�ciency using cooperative MARL. However, the
authors do not consider strict deadlines and do not address
the theoretical limitations of decentralized MARL like the
non-stationarity during training.

At last, several strategies leveraging DRL have been put
out to deal with the URLLC constraint in NOMA systems.
The authors of [18] propose Deep-SARSA to tackle the re-
source allocation problem at the BS for minimizing the error
probability in uplink transmissions. Yet, the proposed solu-
tion does not take into account the packet arrival processes,
assumes full observability of the system and does not impose
strict deadlines. Additionally, the work of [19] optimizes
a NOMA based GF protocol with DRL. The authors use
DRL to dynamically adjust the number of repetitions and
radio resources in the proactive GF scheme. Nevertheless,
the approach, which is based on SA, still suffers from a
high collision rate as the load increases, is not designed for
handling both deterministic and sporadic traf�c and fails to
take advantage of channel correlations. A very preliminary
version of our work has been presented in [20]. However, the
proposed solution ignores NOMA, does not take into account
channel correlations and is only adapted to probabilistic
periodic traf�c.

In this paper, we consider a system in which the BS semi-
blindly schedules the devices for their uplink transmissions,
as it is done in grant-based access, however without the need
for scheduling requests. Thanks to NOMA, the BS is able to
poll multiple devices for a transmission in the same resource.
We thus tackle a partially observable scheduling problem
where the BS should strike a balance between acquiring
scheduling information and avoiding excessive collisions.
Our problem is characterized by two challenges, namely a
combinatorial action space and a partially observable envi-
ronment, that conventional DRL algorithms fail to handle.
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2) DRL challenges for uplink URLLC

First, allowing the BS to poll multiple devices in a frame
drastically increases the action space. Fork devices, the
decision maker needs to choose between2k actions, which
is exponential ink. Few solutions have been proposed to
address this problem in the literature. The most common
one is proposed in [21]. The authors' idea is to project
the large discrete action space in a continuous action space
and thus solve a continuous action RL problem with the
traditional Deep Deterministic Policy Gradient algorithm
[22]. However, this approach assumes that the discrete action
space can be embedded in a continuous space, which is
not straightforward for our Multiple Access (MA) problem.
An alternative is the work of [23]. The authors solve a
high dimensional action space RL problem with a Recurrent
Neural Network (RNN) to sequentially predict the action
vector, one dimension after the other. Nevertheless, not only
does this algorithm assume that we know how to order the
action dimensions, but the Q-value estimated for the last
dimension is very noisy, especially whenk is large. An
extension of this paper is the Branching Dueling Q-Network
(BDQ) [24]. The authors solve a RL problem with ak-
dimensional action space using a dueling architecture where
there is a value network common for all dimensions andk
advantage networks, one for every dimension. Yet, not only
is this solution ill-suited to manage partial observability, but
it also cannot account for any prior knowledge the agent
might have regarding the dynamics of the environment.

Second, as the BS is not aware of the whole environment
and takes decisions solely based on partial observations of
the environmental state, our problem can be modeled by a
POMDP [25]. When observations are not Markovian, tradi-
tional RL algorithms work with history dependent policies,
an approach that can be rapidly computationally intractable
as the number of possible histories grows exponentially with
the horizon. A way to alleviate this problem is to introduce
belief states, a probability distribution over the states, which
is also a suf�cient statistic for the past history and the initial
state distribution. A POMDP can be then reformulated as
a MDP in which the state space is the continuous belief
state space. Traditional RL methods like Q-learning or policy
gradient algorithms can �nally be used on the resulting
belief-MDP [26].

Three main methods are proposed in the literature to
derive or estimate a belief state: 1) the belief update formula
[26], 2) a RNN [27] and 3) a generative model [28].
However, all these methods suffer from major drawbacks.
While the belief update formula requires the knowledge
of the environment dynamics (transition and observation
function), using a RNN or a generative model introduces
a new layer of complexity since there are now two phases
involved: the belief estimation and the computation of the
optimal policy. Additionally, since Deep Neural Networks
(DNNs) are black boxes, it is impossible to add any prior
knowledge that the agent might have about the environment.

Moreover, the learned beliefs are dif�cult to interpret and
error might be propagated to the policy optimization phase.

An alternative to the belief state is the notion ofinforma-
tion state[29] or internal state[30, Section 12.4.2]. The idea
is to derive a function of the history which is a suf�cient
statistic for estimating the environmental state. However,
learning such a suf�cient representation of the history is
dif�cult as it is often task-speci�c.

B. Contributions and outline

In this paper, we formulate the NOMA-URLLC problem
as a partially-observable scheduling problem and solve it
by proposing a DRL algorithm. Our contributions can be
summarized as follows:

� We formulate a general MA problem with the URLLC
constraint, considering packets with strict deadlines and
NOMA uplink communications as a POMDP.

� We introduce the notion ofagent statein order to
theoretically address the POMDP formulation. We show
that the agent state is a suf�cient statistic for the past
observation-action history that allows us to 1) express
past actions and observations in a compact way, and 2)
convert the POMDP problem to an MDP and bene�t
from the convergence properties of the DRL algorithms.
This transformation can be extended to other wireless
settings where partial observability regarding the buffer
or channel evolution needs to be addressed.

� We propose a DRL algorithm,NOMA-PPO, that en-
hances the state-of-the-art algorithm PPO [31] with two
components: 1) a branching policy network architecture
in order to linearly manage combinatorial action spaces.
This idea is inspired by the BDQ architecture [24] and
extended to PG methods. 2) Bayesian policies, that
incorporate prior information about the MA problem
into the DRL agent [32].

� We provide numerical evidence that our approach out-
performs traditional MA and DRL benchmarks across
3GPP scenarios in terms of URLLC score, convergence
speed, and fairness. Furthermore, we show that our
algorithm is able to cope with different traf�c models, a
deterministic periodic and a probabilistic aperiodic traf-
�c model in particular. Finally, our algorithm exhibits
robustness against different channel con�gurations and
demonstrates a successful exploitation of time-varying
channel information.2

In Section II, we de�ne the system model. Section III
formulates the POMDP problem. Section IV presents the
NOMA-PPO approach and �nally, Section V exposes the
simulations and numerical results.

Notations: For a �nite setX , �( X ) denotes the set of all
probability distributions overX . The indicator function is de-
noted1f�g , diag(�) is the diagonal operator that transforms a

2The code associated with the research presented in this paper is available

for public access on the following GitHub repository.
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vector in a diagonal matrix and� is the Hadamard product.
The matrices are written in bold upper case and the vectors
in bold lower case.h�i refers to a tuple,[�] to the modulo
operator andargB min(S) returns a set ofB elements in
S having the lowest value (ties are broken at random). The
system model parameters are summarized in Table 1, while
those for the algorithm can be found in Table 2.

II. System Model
A. Network Model

We consider a time-slotted wireless network ofK hetero-
geneous devices communicating with a BS over a wireless
shared channel on the uplink. Every device has a single
antenna and the BS is equipped withna antennas. The time
is divided into radio frames of durationTf and every frame
is divided into �ve time-slots of durationTs (see Fig. 1).
This division represents the minimum time required for the
processes of polling, transmitting and acknowledging. The
time synchronization among all devices is performed by the
BS using downlink signals. During the �rst slot of every
radio frame, the BS is allowed to poll a number of devices
for a potential uplink transmission, described by the vector
a = ( a1; a2; : : : ; aK ) 2 f 0; 1gK , whereak = 1 when the
device k is polled andak = 0 otherwise. It also allocates
orthogonal resources for uplink pilot transmissions from the
polled devices. After a guard interval, apolled device with
at least a packet in its buffer becomesactive and transmits
during the third slot. Its transmission includes a pilot signal
for channel estimation, sent using the orthogonal resource
allocated by the BS. Its transmission also includes the buffer
status of the device. Polled devices without any packet to
transmit do not send any pilot and thus leave the allocated
resource unused. We assume that all packets have the same
size ofL bits. After a guard interval, the BS acknowledges
the reception of successful transmissions.

The set of active users at framet 2 N is denotedU(t)
and the number of active devices is denotedU(t), i.e.,
jU(t)j = U(t). We denote alsou(t) 2 f 0; 1gK the vector
of active users at framet such thatuk (t) = 1f k 2 U(t)g.
Besides, we de�ne� p(t), � a(t), � s(t) vectors of sizeK ,
where each componentk represents the number of frames
since the last time devicek has been polled, active and
successfully decoded, respectively.

We assume that the system is using NOMA [2] to improve
the spectral ef�ciency of the network. NOMA allows several
users to use the same frequency and time resources by
superposing their signal in the power domain. At the receiver
side, the BS applies Successive Interference Cancellation
(SIC) to decode the superposed signals.

B. Interference Channel Model

We adopt a realistic channel model that has been adopted
in the literature, based on the evaluation of the Signal-to-
interference-plus-noise ratio (SINR) [33] and the �nite block
length regime, see e.g. [34].

FIGURE 1: Radio frame structure.

1) Received Signal

In this model, a devicek 2 U(t), active in frame t,
transmits a signalsk (t) of power pk (t) = E[jj sk (t)jj2],
where the expectation is taken over possible symbols. In
a general formulation, transmit power could be controlled.
However, for the sake of simplicity, this work focuses on
scenarios with a �xed transmit power. The BS is supposed
to receive the signal withna antennas and to perform Max-
imum Ratio Combining (MRC). The transmission of userk
experiences a large scale fadinggk (t), which accounts for
the distance-dependent path-loss and shadowing, fast fading
h k (t) = [ hk1(t); � � � ; hkn a (t)]T 2 Cn a � 1 and thermal noise
n 2 Cn a � 1. The signal received by the BS at framet from
all active devices can thus be written as a superposition of
s1(t); : : : ; sU (t ) (t) and thermal noise:

r s (t) =
X

k2U (t )

h k (t)
p

gk (t)sk (t) + n (t) (1)

whereni (t); i = 1 ; : : : ; na is an independent circularly sym-
metric white Gaussian process with distributionCN(0; � 2

n I ).
Thanks to the orthogonal pilots sent on the uplink, the BS
is able to estimate the channel realizations of active devices.
From now on, we assume that the BS has a perfect channel
state information for decoding. In MRC, the signals received
on the na antennas are combined using a weight vector
w H

k = h k for devicek. The combined signalyk (t) = w H
k r s

for devicek is thus:
yk (t) = hH

k (t)h k (t)
p

gk (t)sk (t) + hH
k (t)n (t)

+
X

j 2U ( t )nf kg

hH
k (t)h j (t)

q
gj (t)sj (t) (2)

We assume that BS antennas are suf�ciently spaced so that
the fading coef�cients at every antenna are spatially uncorre-
lated and thush k � CN (0; I ) for all k. The fast fading pro-
cesshki (t), for k = 1 ; :::; K and i = 1 ; :::; na , is supposed
to follow a time-correlated Gauss-Markov model [35]:

hki (t) = �ak hki (t � 1) + zk (t) (3)

where zk (t) � CN (0; 1 � �a2
k ). The fading correlation

coef�cient �ak is modeled using the Jakes' model [36]:�ak =
J0(2�v k f cTf =c), whereJ0 is the Bessel function of the �rst
kind and order 0,vk is the speed of devicek, f c is the carrier
frequency,c is the speed of light andhki (0) � CN (0; 1).
The coherence time for a device moving at speedv is
Tc = c=(8f cv) [37]. The channels are supposed to be mutu-
ally independent across devices and constant during a frame
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TABLE 1: System Model Parameters

Notation Description

K , na Number of devices, number of antennas.

Ts , Tf Slot length, radio frame length.

U(t ), u (t ) Set and vector of active devices att .

sk (t ), pk (t ) Transmitted signal, power ofk at t

gk (t ), h k (t ) Large scale fading, fast fading ofk at t

r s (t ) Received signal from active users.

y k (t ) Combined signal fork at t .

� (t ) Decoding order permutation.

� k (t ) Indicator for successful decoding ofk.

� k (t ) Received power fork at t .


 no-SIC
k (t ), 
 SIC

k (t ) SINR for k without SIC, with SIC att .

� k (t ) Error probability ofk at t .

n, M � (n; � ) block length, maximum code size.

B SIC limitation.

f k , Np Offset, period of packet generation fork.

dh
k , � k Head-of-line delay, latency constraint ofk.

�� k (t jf k ; � k ; N p ) Probability thatk generates a new packet att .

� k Rate of packet generation atk.

B (t ), bk (t ) Buffer status matrix and vector ofk at t .

dh (t ) Head-of-line delays of users att .

T B , T H Buffer and channel state transition operators.

(following a block fading channel model [38]). We assume
a rich scattering environment with stationary scatterers, as
detailed in [35], [36], [38]. We denoteH (t) 2 Cn a � K

the matrix of all channel realizations at timet and T H the
evolution process, i.e.,H (t + 1) � T H (H (t)) .

2) Decoding Order

The SIC decoding order at each framet can be seen as
a permutation function� (t) over the set of active devices,
i.e., � (t) : [1 : U(t)] ! U (t). For any i = 1 ; :::; U(t),
� i (t) is the i -th decoded device's index and for anyk 2
U(t), � � 1

k (t) is the rank of userk in the decoding process.
When the BS tries to decode device� i (t), it has already
tried to decode all devices� 1(t),..., � i � 1(t). Each decoding
might have been successful or not. Let� k (t) be the indicator
whether an active devicek 2 U(t) has been successfully
decoded by the BS (� k (t) = 1 ) or not (� k (t) = 0 ) and
� (t) = ( � 1(t); : : : ; � K (t)) the vector of all indicators. As
a consequence, the signal received at the BS from� i (t) is
subject to the interference of� j (t), j > i , i.e., from devices
that have not been yet considered for decoding by the BS,
and to the interference of� j (t), j < i whenever� � j ( t ) = 0 ,
i.e., from devices that have not been successfully decoded
by the BS.

We now assume the decoding order that minimizes the
total transmit power, given target rates on the uplink [37]:
active devices are sorted in decreasing order of their received

TABLE 2: Algorithm Parameters

Notation Description

s(t ), o(t ) State and observation att .

B o (t ) Observed buffers att .

� o (t ) Observed received power att .

� p (t ), � a (t ), � s (t ) Last time the devices have been polled, active,

successfully decoded.

a(t ) Action of the agent att .

r (t � 1) Reward at stept � 1.

f A Transition function for the agent state.

B A (t ) Buffers representations by the agent.

� A (t ) Last known received power by the agent.

~(t ) History of observations and actions att

� � Policy parameterized by� .

A � � old ,V � � old Advantage and value functions.

V' Value network parameterized by'

Â GAE (t ) Generalized Advantage Estimator.

� Clipping parameter for PPO.


 Discount factor.

EDF EDF prior.

f ch Channel prior.

f Bayesian prior over the agent state.

q Posterior policy

power at the BS, as follows:

� � 1 (t) � � � 2 (t) � � � � � � � U ( t ) (t) (4)

where � k (t) = pk (t)gk (t)jjh k (t)jj2. We denote� (t) =
(� 1(t); � 2(t); : : : ; � K (t)) the vector of received powers. We
denote � o(t) the vector of powers received by the BS
from the active devices, observed at timet thanks to the
transmitted pilots, i.e.,� o (t) = diag(u (t)) � (t).

3) Signal to Interference plus Noise Ratio

In absence of SIC, the signal (2) results in a SINR at the
output of the combiner [39]:


 no-SIC
k (t) =

� k (t)
P

j 6= k � jk (t) + � 2
n

(5)

where� jk (t) = pj (t)gj (t) j h H
k h j j2

jj h k jj 2 .
With SIC however, we decode in the decreasing order

of � k (t), so that part of the interference is potentially
successively removed. The SINR with SIC writes now:


 k (t) =
� k (t)

X

j 2 J 1

(1 � � j (t)) � jk (t)

| {z }
beforek in decoding order

+
X

j 2 J 2

� jk (t)

| {z }
afterk

+ � 2
n

(6)

where J1 = f j 2 U(t); � � 1
j (t) < � � 1

k (t)g is the set of
devices that are considered for decoding beforek andJ2 =
f j 2 U(t); � � 1

j (t) > � � 1
k (t)g is the set of devices that are

decoded afterk. Note that� j is determined iteratively: we

VOLUME , 5



Author et al.:

are able to compute the SINR of devicek, only once we
know the outcome of the decoding for devicesj 2 J1.

4) Achievable Rate with Finite Block Length

As the URLLC messages are often supposed to be very
small [40] (in the factory automation scenario for instance),
we adopt a �nite block-length regime [41] for the calculation
of the achievable rate. In this model, an encoder maps every
L -bit messagem 2 [1 : M ] to a codewordcm 2 Cn , where
M = 2 L is the size of the message space andn is the block
length, also known as the number of complex channel uses.
Codewords are subject to an average power constraint, i.e.,
1

M

P
m jj cm jj2 = n� , where � is the received power per

channel use. The codeword is transmitted over an Average
White Gaussian Noise channel with noise variance� 2. At the
receiver, a decoder maps the channel output to an estimate~m
of the message. The average error probability is de�ned as
" = P[ ~m 6= m]. A codebookf cm 2 Cn ; m 2 [1 : M ]g and
a decoder whose average error probability is less than" are
called a(M; n; " )-code. For given" and n, the maximum
code size is denotedM � (n; " ). Authors of [41] provide a
normal approximation of the maximum achievable code rate:

log2 M � (n; " )
n

� C(
 ) �

r
V(
 )

n
Q� 1(" ) (7)

where 
 = P
� 2 is the Signal to Noise Ratio (SNR),P is

the received power,C(
 ) = log 2(1 + 
 ) is the Shannon
capacity3, V(
 ) = 


2

 +2

( 
 +1) 2 log2
2 e is the channel dispersion

and Q(x) = 1 =
p

2�
R1

x exp(� t2=2)dt. Although (7) is an
asymptotic approximation whenn tends to in�nity, it is tight
for n as small as200 [41]. When considering a block fading
channel with channel realizationh, (7) is validconditionnally
to the channel realization with
 = P jh j2

� 2 . In our study, we
further treat interference as noise, as it is usually done in the
literature [38, Chapter 15], and apply (7) with the SINR in
(6). As a consequence, a packet of devicek, transmitted at
frame t, is not successfully decoded with probability:

� k (t) = Q
� r

n
V(
 k (t))

�
C(
 k (t)) �

L
n

��
(8)

The downlink allocation and the acknowledgment are sup-
posed to be error free.

5) SIC Limitation

We de�ne an upper limitB on the number of possible
multiplexed users which is characteristic of the SIC perfor-
mance [37]. More speci�cally, a necessary condition for a
devicek to be decoded is that the number of active devices
is less thanB , i.e.

jU(t)j � B (9)

3Note that contrary to [41], which considers the capacity per real

dimension, we use a complex representation of the signal. As a consequence,

C is the capacity per complex dimension [37, Chapter 5].

In other words, any simultaneous transmission of more than
B packets provokes a collision.

Finally, at framet and for a userk, we can write� k (t)
as a Bernoulli random variable of parameter1 � � k (t), i.e.,
� k (t) � B (1 � � k (t)) when (9) is satis�ed, and� k (t) = 0
otherwise. The SIC decoding procedure is summarized in
Algorithm 1.

Algorithm 1: SIC Decoding Procedure
input : U(t), � (t)
output: � (t) = ( � 1(t); � 2(t); : : : ; � K (t))

1 Initialize: � k (t) = 0 ; 8k.
2 if jU(t)j � B then
3 foreach k 2 U(t) in decreasing order of� (t) do
4 Compute the SINR
 k (t) using (6) and� (t)
5 Compute� k (t) using 
 k (t) according to (8)
6 Draw � k (t) from the Bernoulli distribution:

� k (t) � B (1 � � k (t)) , i.e. decode the packet
with probability 1 � � k (t)

C. Traf�c Models

Packets are generated at the devices according to models of
either probabilistic periodic traf�c or probabilistic aperiodic
traf�c and are subject to a strict deadline constraint.

Probabilistic periodic traf�c

In this model, directly inspired by [42], a devicek generates
packets periodically everyNp radio frames with probability
� k . Devices are not synchronous, i.e., each device is assigned
an offset parameterf k 2 [0; Np] such that, at every radio
frame t � 0, the probability for a devicek of generating a
new packet is:�� k (t jf k ; � k ; Np) = 1f t [N p ]= f k g� k . Note that
a speci�c case for this model is thedeterministic periodic
traf�c as de�ned in [40, Annex A] for various use cases
including for example factory automation, where� k = 1 and
f k = 0 for all k. Periodic transmissions may correspond to
the periodic update of a position or the repeated monitoring
of a characteristic parameter [43].

Probabilistic aperiodic traf�c

This traf�c model is de�ned in [40] and is based on the File
Transfer Protocol (FTP) model 3 de�ned in [44], however
with a �xed packet length. At every devicek, packets are
generated according to a Poisson process of rate� k . An
aperiodic transmission may correspond to process, diagnostic
or maintenance events that trigger the transmission [43].

Deadlines

Every devicek has an individual latency constraint� k 2 N�

expressed in number of radio frames, such that a packet that
has not been transmitted after� k radio frames is dropped. Let
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� = max k � k . When a transmission fails, a device is allowed
to retransmit the packet as long as it has not expired.

Buffers

We assume that devices have an in�nite buffer and packets in
the queue are delivered in a “�rst come, �rst served” manner.
For every devicek, the buffer at timet can be represented by
a vectorbk (t) = [ bk; 1(t); :::; bk;� (t)] 2 N� wherebk;d (t) = i
when devicek hasi packets with time-to-deadlined at time
t. We denoteB (t) the matrix of all buffer status at timet.
The head-of-line delaydh

k (t) of userk at framet is de�ned
as bk;d h

k ( t ) (t) 6= 0 and bk;d (t) = 0 for all d < d h
k (t) if it

has at least one packet in its buffer. This is the smallest
time-to-deadline in the buffer of devicek. We notedh =
[dh

1 ; dh
2 ; : : : ; dh

K ] the vector of all head-of-line delays. When
a device is polled and has at least one packet to transmit, it
chooses for transmission one of the packets associated to its
head-of-line delay at random.

For a devicek, the buffer status transits as follows: (a)
Successfully decoded packets are removed from the buffer,
i.e. bk;d h

k ( t ) � 1(t + 1) = bk;d h
k ( t ) (t) � 1 if � k (t) = 1 ; (b)

Other packets see their time-to-deadline decreased by one,
i.e., bk;d � 1(t + 1) = bk;d (t) for all d > 1. If d = 1 , the
packets expire and are removed from the buffers; (c) Ifm
new packets are generated at the device, they enter the buffer
with a deadline� k , i.e., bk;� k (t + 1) = m.

We denote this operationT B , i.e.,

B (t + 1) � T B (B (t); � (t)) (10)

When an active device is successfully decoded, its buffer
status is known (or observed) to the BS. When a device is
polled and yet has no packet to transmit, it does not transmit
its pilot so that the BS is informed that its buffer is empty.
We denoteB o(t) the matrix of observed buffer status at
time t.

III. Problem Formulation
A. Optimization Problem

The objective of the BS is to maximize the expected number
of successful transmissions with respect to the stochastic
policy � that maps the current observation history at frame
t: (B o(t); � o(t); : : : ; B o(0); � o(0)) to the vector of devices
to schedulea(t). Moreover, buffers and channels are subject
to the dynamicsT B andT H , respectively. The optimization
problem (P) can thus be formulated as:

max
�

E
(T B ;T H ;� )

2

4
1X

t =0

X

k2U (t )


 t � k (t)

3

5

s.t. B (t + 1) � T B (B (t); � (t))

H (t + 1) � T H (H (t))

(P)

where 
 2 [0; 1) is the discount factor that determines the
importance of future rewards compared to immediate ones.

B. POMDP Formulation

To solve our problem, we adopt the POMDP framework, see
e.g. [25], [26]: at every time stept, an agent interacts with
the environment by taking an action, gets an observation
from the environment and obtains a reward.

De�nition 1 (POMDP):
A POMDP can be described by a tuple (S, A , T , R , 
 , O),
where

� S is the state space, i.e., a �nite set of environmental
states,

� A is the action space, i.e., a �nite set of actions,
� T : S � A 7! �( S) is the transition function which is

a probability distribution over the next environmental
states0 when it was in states and the actiona has been
taken. It veri�es the Markov property:s0 � T (�js(t) =
s; a(t) = a),

� R : S � A 7! R is the reward function, whereR(s; a)
is the immediate reward by taking actiona in states.
We denoter (t) the immediate reward at timet.

� 
 is the observation space, i.e., a �nite set of observa-
tions,

� O : S � A 7! �(
) is the probability distribution of
the observationo when the environment is in states0

and the agent has taken actiona: o � O (�js(t + 1) =
s0; a(t) = a).

The history ~(t) at time t is de�ned as the sequence of
actions taken by the agent and observations from the en-
vironment~(t) = f o(0); a(0); o(1); a(1); :::; a(t � 1); o(t)g,
where a(t) 2 A and o(t) 2 
 for all t. The agent makes
decisions using a stochasticpolicy � that is a distribution
over the actions knowing the history.

The POMDP related to our problem consists in the fol-
lowing components.

1) State space

At each stept, a states(t) is de�ned as the concatenation
of the buffer statusB (t), the received powers� (t), and
the observationo(t) obtained from the active users at the
previous step:

s(t) = hB (t); � (t); o(t)i (11)

whereo(t) = hu(t � 1); � (t � 1); B o(t � 1); � o(t � 1); r (t �
1)i is the vector of active users, the vector of decoded
packets, the observed buffers, the observed received power
and the reward att � 1 respectively.

2) Action space

The agent has the possibility to poll any subset of devices
at every frame. The action space is thus de�ned asA =
f 0; 1gK . For a = ( a1; a2; : : : ; aK ) 2 A , ak = 1 if the agent
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polls devicek and ak = 0 otherwise. Note that the action
space grows exponentially with the number of devices.

3) Transition function

When the system is in states(t) at the beginning of a
radio frame t, it transits to states(t + 1) at the end of
the radio frame. The received power� (t) evolves with the
channel realizationsH (t) and is governed byT H . Finally
the evolution of the buffers is described byT B . The next
observationo(t + 1) is computed using the observation
function de�ned in the next subsection.

4) Observation space and observation function

At every framet, the RL agent can only observe the last
feedback from the active users: the set of active users,
their channel realizations, the buffer status of successfully
decoded devices and the reward. From the states(t +1) and
actiona(t), the observation at timet +1 is deterministic and
de�ned by:

o(t + 1) = O(s(t + 1) ; a(t)) (12)

= hu(t); � (t); B o(t); � o(t); r (t)i (13)

In particular, � (t) � B (1 � � (t)) , B o (t) = diag(u (t) �
� (t))B (t) and � o (t) = diag(u (t)) � (t). Note that when a
devicek is active but its packet is not decoded, the agent still
has the information that this device has a packet to transmit
throughuk (t) = 1 .

5) Reward function

We de�ne the reward function as the number of successfully
decoded packets:

R(s(t); a(t)) =
X

k2U (t )

� k (t) (14)

Note that unlike most RL approaches for multiple access
[14], [15], [45], we do not penalize the agent when there is
a collision or interference. The reason is that we want the
agent to learn a tradeoff between sensing and transmitting.
In our experiments, we have noticed that using a penalty for
collisions did not improve the performance.

The POMDP formulated above aims at maximizing the
optimization problem (P). In general, POMDP problems are
known to be PSPACE-complete [46], which means that they
can be solved using a polynomial amount of memory space
and are at least as hard as every other PSPACE problem. In
order to solve this POMDP, we introduce a suf�cient statistic
for the history of past actions and observations, that we call
the agent state, and that allows us to transform the POMDP
problem into an MDP.

C. Agent state for Solving a POMDP

De�nition 2 (Agent state):

At the beginning of each framet � 1, we de�ne theagent
stateA (t) after the agent receives its observationo(t) as:

A (t) = hB A (t); � A (t); � p(t); � a(t); � s(t); r (t � 1)i ; (15)

where � p(t), � a(t) and � s(t) are the number of frames
from t since the last time the devices have been polled,
active and have successfully transmitted respectively.� A (t)
is the last known received power of the active devices, i.e.,
its k-th column is � k (t � � a

k (t) � 1). The matrix B A (t)
is a representation of the buffers given the observations
made by the BS at timet and is de�ned as follows. If an
active userk has been successfully decoded in the previous
frame, we updatebA

k (t) with the new observation, i.e.,
bA

k (t) = bo
k (t � 1). For all devices, we decrease the deadlines

of the packets in the buffers representation at timet � 1 by
1 and we remove the expired packets.

While B o(t) is an immediate observation of the buffers of
the active users att, B A (t) is a compact representation of all
past buffer observations att. IntroducingB A (t) allows us to
incorporate the knowledge of the dynamics of the buffers in
the agent. Yet, the agent is still not aware of the new arrivals.
To summarise, the agent state at framet, A (t), can be written
as a functionf A of the observationo(t), the previous action
a(t � 1) and the previous agent stateA (t � 1), i.e.,

A (t) = f A (A (t � 1); o(t); a(t � 1)) (16)

Proposition 3.1:
A is a suf�cient statistic for the action-observation history,

i.e.,
P(s(t)j~(t)) = P(s(t)jA(t)) (17)

Proof:
See Appendix A.

Proposition 3.2:
The tuple (SA ; A ; T A ; R A ) forms an MDP whereT A :
SA � A 7! �( SA ) is the agent state transition function
andR A : SA � A 7! R the agent state reward function such
that:

T A (A (t); a(t)) =
X

o( t +1) 2 


f A (A (t); a(t); o(t + 1))

� P(o(t + 1) ja(t); A (t))

R A (A (t); a(t)) =
X

s( t )2S

P(s(t)jA (t))R(s(t); a(t))

where:

P(o(t + 1) ja(t); A (t)) =
X

s2S

O(o(t + 1) js; a(t))

�
X

s2S

T (s(t + 1) js; a(t))

Proof:
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FIGURE 2: Formulation of the NOMA-URLLC problem.

The expressions ofT A and R A are directly derived using
the law of total probability and the Bayes formula.

The problem formulation is summarized in Fig. 2.

1) At the beginning of framet, the system is at states(t).
2) The agent can observeo(t) = O(o(t)js(t); a(t � 1)).
3) It then computes the agent state using (16).
4) It makes an actiona(t) � � (a(t)jA (t)) .
5) The system then transitions to the next state as follows:

s(t + 1) � T (s(t + 1) js(t); a(t)) and the agent
receives:R(s(t); a(t)) ; u (t); � (t); � o(t); B o(t).

Transforming the POMDP problem in an MDP allows us
to leverage DRL algorithms in order to solve the optimiza-
tion problem (P).

IV. Deep Reinforcement Learning Approach
A. Proximal Policy Optimization algorithm

The Proximal Policy Optimization (PPO) algorithm [31] is
a Policy Gradient (PG) algorithm that bene�ts from the
Trust Region Policy Optimization policy update [47] while
being data ef�cient. The idea is to restrict the amplitude
of the policy update in order to improve training stability
while only using �rst-order optimization. PPO maximizes
the following objective with respect to parameters� :

Es;a � ( � old;T )

�
min

�
� � (ajs)
� old(ajs)

A � old(s; a); g(� )A � old(s; a)
��

(18)
with g(� ) = clip

�
� � (a js)
� old(a js) ; 1 � �; 1 + �

�
and � 2 [0; 1) a

hyperparameter that indicates how far away the new policy
can deviate from the old one.A � old is the advantage function

and is de�ned by:

A � old(s(t); a(t)) = Q� old(s(t); a(t)) � V � old(s(t)) (19)

It describes the valueQ� old(s(t); a(t)) of an actiona in a
states compared to the value of the stateV � old(s(t)) (how
much better or worse it is to take this action). The estimated
advantage function, noted̂A can be computed according to
several methods that can be found in [48]. The most ef�cient
method, which is also the one we adopt in NOMA-PPO,
is the Generalized Advantage Estimation (GAE) algorithm
[48]. This algorithm uses the temporal difference residuals
� V (t) = r (t) � 
V (s(t + 1)) � V (s(t)) in order to de�ne
the Generalized Advantage Estimator̂AGAE (t):

ÂGAE (t) =
1X

l =0

(
� GAE ) l � V (t + l) (20)

where � GAE 2 [0; 1] adjusts the bias-variance tradeoff.
This method manages to reduce the variance of the gradient
estimate and stabilizes training at the cost of introducing a
bias. In practice, the value functionV is approximated by a
DNN with parameters' : V' .

B. Exploiting Prior Knowledge

In our scheduling problem, the Earliest Deadline First (EDF)
scheduler, which schedules pending packets in the increasing
order of their deadline, intuitively is a good heuristic when
the environment is fully observable by the scheduler. EDF
is indeed known to be optimal in various deterministic [49]
and stochastic (see e.g. [50]) settings. We thus adapt it to
NOMA as follows: given the devices' buffers,B (t), EDF
schedules theB users with the smallest head-of-line delay
dh

k (t).

EDF( B (t)) = ( a1; : : : ; aK ); (21)

whereak =
�

1 if k 2 argB min( f dh
1 (t); : : : ; dh

K (t)g)
0 otherwise

Note that in our POMDP problem, EDF cannot be im-
plemented in practice, as it requires full observability of
the system, but can serve as a valuable benchmark. We can
further allow the scheduler to take into account the channel
state, by introducing a prior regarding the channel quality. In
particular, we de�ne a prior on the channelf ch as follows:

f ch(� (t); � a ) = ( a1; : : : ; aK ); (22)

whereak =
�

0 if � k � � � and � a
k � � �

1 otherwise

where� � � 0 and � � � 0 are hyperparameters to determine
the quality of a channel. Typically,� � is the threshold that
indicates when a user will not be decoded with a high
probability, regardless of the others' channels and� � is the
coherence time that indicates whether the last information
we have on the channel is relevant or outdated. The intuition
behind this prior is that a user should remain inactive if it
experiences a very “bad” channel.

The resulting priorf is thus a combination of the EDF
and channel prior:
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f (a; A ) = EDF (B (t)) � f ch(� (t); � a ) (23)

In order to incorporate this prior knowledge into the RL
agent, we introduce a Bayesian policy inspired by [32]. We
express the posterior policyq(ajA ; � � ) as a function of the
prior over the agent statef (a; A ) and the task speci�c policy
� (ajA ; � � ) parameterized by� � with the Bayes rule:

q(ajA ; � � ) / � (ajA ; � � ) � f (a; A ) (24)

C. Algorithm Overview and Architecture

The neural network architecture is described in Fig. 3.
NOMA-PPO uses two neural networks, one for the policy
and one for the critic. The input vector is the concatenation
of the preprocessed buffer informationB A (t), the timing
information 1=� p(t), 1=� a(t), 1=� s(t), the channel infor-
mation � A (t) and the last rewardr (t � 1). Its size is thus
5K + 1 .

Following a branching architecture, the policy network
produces activation probabilities for each user, yieldingK
outputs: � � (ajA ) = ( � � (a1jA ); � � (a2jA ) : : : ; � � (aK jA )) .
Inspired by the BDQ architecture [24], which employs this
approach for Q-learning, we handle the combinatorial action
space in a manner that scales linearly with the number of
users and adapt it to the PPO algorithm. TheseK outputs
are then coordinated by a �rst block of hidden layers that are
shared by allbranches. This design balances the complexity
of the model with the need to capture inter-dependencies
among actions. While the single-layer branches simplify the
model and enhance ef�ciency, the shared layers ensure that
the critical inter-dependencies of our scheduling problem are
captured.

On the other hand, the value network follows the same
architecture of the policy network, except that it outputs a
single value for the state value estimation. The procedure
for training NOMA-PPO is developed in Algorithm 2. The
training process for the algorithm consists of two phases: an
initial of�ine training using synthetic data until satisfactory
performance is achieved, followed by the deployment in the
real environment where continuous updates of the policy
and value network are performed in parallel, based on data
collected during operation. Note that it is required to have
a stationary environment across the initial training and the
operation phases in order that the learning algorithm can
ef�ciently exploit the training data. Moreover, as system
parameters evolve or change, periodic maintenance or re-
training of the algorithm is necessary, either on a scheduled
basis or when a decline in performance is observed.

V. Experiments
A. Simulation Settings and Implementation Details

Simulations are conducted at the MAC layer. Our simulation
settings (see Table 3) adopt the parameters of the factory
automation use case of the 3GPP 5G NR speci�cations on
URLLC [40] and industrial IoT [59]. Our radio frame is

FIGURE 3: Architecture of the NOMA-PPO agent.

made of �ve time-slots (Tf = 5Ts), whose durationTs is
equivalent to an OFDM symbol in NR. It can be decomposed
into an information part of durationTi and a cyclic pre�x of
durationTcp, which both depend on the subcarrier spacing
� f : Ts = Ti + Tcp with Ti = 1=� f . From the signal
bandwidth we substract the subcarriers dedicated to uplink
pilots, so that, when there areU polled devices andnp

pilots per device, the number of complex channel uses is
n = ( W � npU� f )Ti [37, Chapter 5]. The number of pilots
per device can be obtained as follows:np = dW=Wce, where
Wc = 1=(2Td) [37, Chapter 2] is the coherence bandwidth
andTd is the delay spread.

Regarding the traf�c model, we consider either a deter-
ministic periodic traf�c with period1=� or a probabilistic
aperiodic traf�c with average inter-arrival time1=� . A packet
can be decomposed into an information part of lengthL i , a
header part of lengthL h , and a buffer description of length
L b, so thatL = L i + L h + L b. In URLLC, headers cannot
indeed be neglected with respect to the message length. We
assume that the information part, the header and the buffer
information are jointly encoded [60]. The traf�c parameters
of Table 3 are taken from the factory automation use case of
Release 16 [40]. On the downlink, the poll packet includes
the vectora = ( a1; a2; : : : ; aK ) 2 f 0; 1gK , whose size only
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Algorithm 2: NOMA-PPO for URLLC uplink
scheduling in NOMA systems.

1 Input : prior f , initial parameters of the policy
network � � 0 and the value networkV' 0 ;

2 for j = 1 ; 2; : : : ; J do
3 Run the posterior policyq� j and collect a set of�

trajectories
f (A b(t); � � j (ab(t)jA b(t)) ; r b(t)) t =1 ;:::;T gb=1 :::� .

4 Compute the rewards-to-gôRb(t) for each
trajectory:R̂b(t) =

P T
t 0= t 
 t 0

r b(t0)
5 Compute the valuesV� j (A b(t)) using the value

network.
6 Compute the advantage estimatesÂGAE

b (t).
7 Update the policy network by maximizing (18) with

the Adam algorithm [51]:

� j +1 = arg max
�

1
�T

"
�X

b=1

TX

t =1

min

 

(25)

� � (ab(t)jA b(t))
� � j (ab(t)jA b(t))

ÂGAE
b (t); g(� )ÂGAE

b (t)

!#

8 Update the value network by minimizing the
mean-squared error with the Adam algorithm:

' j +1 =arg min
'

1
�T

�X

b=1

TX

t =1

�
V' (A b(t)) � R̂b(t)

� 2

(26)

grows linearly with the number of devicesK and remains
reasonable given the number of considered devices and the
bandwidthW available on the downlink. In the numerical
experiments, we consider up toK = 40 devices for a
BS, which is consistent with 3GPP URLLC performance
evaluations [40].

For realistic numerical experiments, we partly adopt the
scenario proposed in [40, Table A.2.2-1] for the factory
automation use case, with a single BS. The network layout is
a rectangle of sizè� `0; the BS is positioned at its center at
a height~hb and serves devices, each at height~hd and moving
with velocity v. Devices are uniformly distributed within the
network area. Devices and BS bene�t from antenna gains
Gb and Gd respectively. For a speed ofv = 3 km/h, we
obtain a coherence time ofTc = c=(8f cv) = 11 :2 ms,
which corresponds to63 radio frames. We choose an episode
length of200 frames that allows us to consider speeds below
1 km/h. The path-loss model is the ITU InH NLOS [61].
In such an environment, the correlation distance is between
a quarter and three quarters of the wavelength [62], i.e.,
between1:8 and5:6 cm in our scenario. It is thus possible to
obtain independence between the antennas by spacing them
a few centimeters apart. The BS has a noise �gureNF , so
that the noise power is� 2

n = N0WNF , where N0 is the
noise power spectral density. Typical values for the channel

TABLE 3: Network Simulation Settings.

Parameter Notation Value

Carrier frequency f c 4 GHz

Bandwidtha W 38:16 MHz

Subcarrier spacing � f 30 kHz

Delay spreadb Td 100 ns

OFDM symbol information part Ti 33:33 � s

OFDM symbol cyclic pre�xc Tcp 2:34 � s

SIC limitation B 3

Information length L i 32 bytes

Headersd length L h 46 bytes

Buffer informatione L b 14 bytes

Average inter-arrival rate 1=� 2 ms

Period in proba. periodic traf�c Np 2 ms

Deadline � 1 ms

Network layout ` � `0 50 � 120 m2

Noise Power Spectral Density N0 � 174 dBm/Hz

BS noise �gure NF 5 dB

BS antenna height ~hb 3 m

BS antenna gain Gb 5 dBi

BS number of antennas na 4

Device transmit power p 23 dBm

Device antenna height ~hd 1:5 m

Device antenna gain Gd 0 dBi

Device speed v 3 km/h
a For a channel bandwidth of 40 MHz, the signal occupies

38.16 MHz after having excluded guard bands [52].
b Typical delay spread for an indoor hot-spot scenario with

carrier frequency 4 GHz [40].
c Normal cyclic pre�x duration for symbols not at the start or

in the middle of the subframe [53].
e Size of an array of size56 corresponding to a maximum

deadline of56 frames, i.e.,10 ms, with 3 bits entries giving

the number of packets for every deadline.
d Headers include 2 bytes of CRC [54], 1 byte for MAC [5],

0 byte for RLC [55], 2 bytes for PDCP [56], 0 byte for

SDAP [57] and 40 bytes for IPv6 [58].

parameters are given in Table 3. We express the deadlines
and inter-arrival time in term of frames. Indeed, given the
frame durationTf , we can deduce that the average inter-
arrival time of 2 ms corresponds to11:2 frames and that the
deadline of1 ms to5:6 frames.

The parameters of the DRL algorithms are given in
Table 4. We preprocess the agent state as follows. In order to
reduce the dimension of the buffer information, the matrix
B A (t) is transformed into a vector of sizeK of head-of-
line delays for each agent. In order to improve stability
of speed up training, we normalize� p; � a ; � s between 0
and 1 by taking1=� p; 1=� a ; 1=� s. The channel threshold
� � is calculated using (8) such that the error probability
in absence of interference corresponding to� � is equal to
10� 5. Finally, note that the history lengthK ~ scales in our
experiments with the number of devicesK . This choice
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TABLE 4: Parameters of the DRL algorithms.

Parameter Value

Input size (H in ) 5K + 1

Hidden size (H ) 256

Discount factor (
 ) 0.3

Learning rate actor 10� 4

Learning rate critic 10� 3

Batch size 128

History length (K ~) K

Episode length (T ) 200 slots

Training length (J ) 10k episodes

Activation functions ReLU

Number of seeds 5

� GAE 0.95

has been experimentally found to provide a good tradeoff
between computational ef�ciency and model performance.

URLLC score

In order to compare our algorithm to the traditional bench-
marks, we de�ne theURLLC scoreas the number of suc-
cessfully transmitted packets over the number of received
packets. In the following experiments, the URLLC score is
computed over 500 episodes which corresponds to approx-
imately 2 � 105 generated packets according to the traf�c
parameters in Table 3. Therefore, a URLLC score of 1 means
that the reliability is greater than1 � 105.

B. Benchmarks

For all baselines, when the BS receives two or more packets
at the same time, we use the SIC procedure described in
Section B to decode the packets.

� Random Scheduler: This scheduler schedules a subset
of B devices uniformly at random.

� EDF: This scheduler schedules pending packets in the
increasing order of their deadlines, see (21). Again,
it cannot be implemented in practice on the uplink
because of the assumed full observability of the device
buffers.

� SA-NOMA-SIC: This baseline is a grant-free approach
that follows the work of [9]. It combines SA with SIC.
At each frame, devices transmit their packet with the
same probabilityp. Regarding re-transmissions, we use
the proactive scheme [8]: a user can re-transmit the
same packet with probabilityp until it is delivered or
expired. The probabilityp is empirically optimized such
that the URLLC score is maximized for every scenario.

� RDQN-NOMA Scheduler: The standard DQN algo-
rithm proposed by [27] is the traditional approach to
solve POMDP problems. The idea is to use an RNN
to handle partial observability. We directly apply this
algorithm in order to solve (P). The action space of

the RL agent is the set of combinations ofB or more
devices to poll.

� Branching DQN (BDQ): this baseline is a version
of the Dueling Double DQN algorithm from [24] that
uses a branching architecture in order to handle a
combinatorial action space.

� iDRQN-NOMA : This baseline is a fully distributed
Multi-Agent Reinforcement Learning (MARL) algo-
rithm for grant-free multiple access that follows the
solution of [15] where each device is modeled by a
Deep Q-network and decides to access the medium
based on its local information: the state of its buffer and
its channel state. This baseline uses a RNN, a Gated
Recurrent Unit (GRU) layer [63] in particular, as it
is a standard approach to tackle partial observability.
Additionally, we extend the work of [15] to NOMA
systems by adapting the reward function as follows: at
the end of every framet, every userk receives the same
reward:

Rk (sk (t); ak (t)) =
� P

i 2U ( t ) � i (t) if jU(t)j � B
� 1 otherwise

(27)
� NOMA-PPO-no-prior : This baseline is the proposed

approach, however without using prior information over
the agent state.

� NOMA-PPO-no-agent-state: this approach is our
NOMA-PPO algorithm without the agent state. It deals
with partial observability using the action observation
history as the input to the policy. It then processes it
using a recurrent neural network (RNN) [27].

In order to be fair in the experiments, we modify the frame
structure of the two grant-free approaches SA-NOMA-SIC
and iDRQN-NOMA and divide it into four time-slots of
durationTs: an uplink transmission symbol, a guard symbol,
a downlink ACK/NACK and a guard symbol.

C. Study of the Channel Model

In this section, we study the behavior of the channel. In
Fig. 4a, we show the channel error probability� as a function
of the distance between a device and the BS, involved in
a point-to-point transmission without interference. Results
are shown for different number of antennas at the BS and
with or without the pilot signals. We see that there are
roughly three regimes that can be distinguished. When the
distance is small, the error probability is very small (less
than 10� 6). When the distance to the BS is too large, the
error probability is close to1. In this regime, there is no
hope to guarantee URLLC requirements. In an intermediate
regime that depends on the number of antennas and the
number of decoded devices, the error probability is not
negligible but the URLLC requirements could be met with
an appropriate scheduling. In this case, the SINR model
is required to bene�t from the channel evolution for every
device. As expected, increasing the number of antennas at the

12 VOLUME ,



(a) For a single device (K = 1 )

.

(b) For three devices after SIC (K = 3 )

.
FIGURE 4: Packet error probability� as a function of the
distance to the BS.

BS improves the reliability. At last, reserving some resource
for pilots has a negligible in�uence on the performance.

In Fig. 4b, we show the error probability as a function
of the distance of the three devices from the BS. The three
devices transmit simultaneously to the BS, which performs
SIC. The resulting error probabilities are shown for the �rst,
second and third decoded signals respectively. We again
observe the three regimes, however with an offset according
to the rank of decoding. The intermediate regime ranges here
approximately between150 m and300 m.

D. Convergence Analysis

In Fig. 5a, we show the evolution of the URLLC score
during the training of 18 learning agents under the prob-
abilistic aperiodic traf�c. First, we can see that NOMA-
PPO converges the fastest and with the smallest variance
to its asymptotic value. Second, we see that not only does
the prior help NOMA-PPO reach a better optimum, it also
increases the convergence speed and reduces the variance.
Third, we can observe that NOMA-PPO-no-prior's perfor-

mance closely aligns with NOMA-PPO-no-agent-state. This
suggests that utilizing the agent state achieves the same
bene�ts as managing partial observability with a RNN, but
with reduced complexity. However, we can see that training
NOMA-PPO-no-agent-state is longer, primarly due to the
higher number of parameters in the GRU layer.

Fourth, while the MARL grant-free approach, iDRQN-
NOMA, reaches the second best optimum in terms of
URLLC score, it converges slower than NOMA-PPO and
with a larger variance. This can be accounted for by the
fact that agents must coordinate independently, solely us-
ing the BS's feedback. Furthermore, we observe that the
DRQN-NOMA scheduler does not manage to converge
due to the combinatorial action space. Indeed, there are
2K �

P B � 1
k=0

� K
k

�
= 261; 972possible actions forK = 18 and

B = 3 , thus choosing the appropriate action is challenging.
In light of the lack of convergence of this algorithm, we
exclude it from future experimental baselines. Finally, we
observe that the BDQ algorithm comes third in term of
asymptotic URLLC score but suffers from high variance. We
notice that for the DRQN-NOMA scheduler and iDRQN-
NOMA, the score does not evolve in the �rst thousand
episodes. It is because of the “warm up” stage where we
collect trajectories in order to �ll the replay buffer of the
agents without updating them.

E. Performance in the 3GPP Scenario

In Fig. 5, we study the performance of our algorithm in the
3GPP scenarios with two different traf�c models. On the one
hand, we study in Fig. 5b the evolution of the URLLC score
as a function of the number of devices on the deterministic
periodic traf�c and on the other hand, the evolution of
the URLLC score and the Jain's Index on the probabilistic
aperiodic traf�c in Fig. 5c and Fig. 5d respectively. The
Jain's index is computed with the URLLC scores.

We observe that our approach, NOMA-PPO, consistently
outperforms all benchmarks in URLLC score and fairness
across various scenarios, with the exception of the EDF
scheduler, which bene�ts from full observability over de-
vices' buffers. This superior performance can be explained
by our technical contributions to better handle partial observ-
ability and the combinatorial action space, augmented with
prior knowledge.

Indeed, we �rst observe that our proposed solution sur-
passes the BDQ algorithm, particularly in high-density
device scenarios, where it often converges to suboptimal
policies. While BDQ can handle large action spaces, its
inability to effectively manage partial observability leads
to the convergence to suboptimal policies as the number
of users increases. In contrast, NOMA-PPO successfully
mitigates the issues of partial observability thanks to the
integration of the agent state.

Regarding grant-free methods, we observe distinct behav-
iors under different traf�c patterns. For instance, the iDRQN-
NOMA algorithm struggles to converge with 30 devices and
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