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1. Introduction

Internet of Things (IoT) is characterised by the deployment of a large amount of
connected objects. These objects are autonomous devices that use sensors to mon-
itor their environment and communicate through a wireless radio channel. When
these sensors are not powerful, they cannot communicate over a long distance,
so that additional intermediate relay nodes may be required to connect them to-
gether. Sensors can themselves route the messages from other sensors or relays. In
this project, we derive the optimal routes between sensors by using the notion of
Steiner tree in graph theory.

Figure 1. Example of sensor network with terminal nodes and
Steiner minimal tree (in bold).

The sensor network is modelled as a undirected weighted graph, whose nodes
are sensors and relay nodes. An edge indicates that a wireless communication is
possible between two nodes. An edge weight represents the cost of transmitting a
message along this edge (either in terms of power or delay). We look for a set of
routes of minimal weight connecting all sensors together. In graph theory, this is
related to the Steiner tree problem, where sensors are terminals and routes form a
Steiner tree.

We start with some definitions, then implement preprocessing steps to reduce the
size of the instances. At last, we implement exact and approximation algorithms
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to solve the problem. Six instances are provided to test your algorithms: scenarios
1 to 6.

2. Definitions

We consider G = (V,E, c), a connected undirected weighted graph with vertex
set V , edge set E and weight function c : E 7→ R+. We set n = |V | and m = |E|.

Definition 1 (Steiner tree). Let K ⊆ V be a non-empty subset of k vertices. A
subgraph T of G with vertex set V (T ) is called a Steiner tree for K, if T is a tree
containing all vertices of K, i.e., K ⊆ V (T ). The vertices of K are called terminals
of T , vertices in V (T )\K are called Steiner points of T , vertices in V \K are called
non-terminals. Steiner points with degree at least 3 are called branching points.

Definition 2 (Steiner problem in networks). Given G and K, find a Steiner min-
imal tree for K in G, i.e., a Steiner tree T for K such that

c(T ) = min{c(T ′)|T ′is a Steiner tree for K in G}
where c(T ′) =

∑
e∈T ′ c(e).

Note that if K = {s, t}, the Steiner problem reduces to the problem of finding
a shortest path between vertices s and t. If K = V , then the Steiner tree problem
reduces to the problem of finding a minimum spanning tree in G. However, in
general, the Steiner tree problem is an NP-hard optimization problem.

The distance network D of G is the complete weighted graph with vertices V and
weight function dG : V × V 7→ R+, where, for v, w ∈ V , dG(v, w) is the minimum
distance between v and w in G. It can be shown that solving an instance of the
Steiner tree problem for K in G is equivalent to solving an instance of the Steiner
tree problem for K in D. Given a Steiner minimal tree TD for K in D, a Steiner
minimal tree T forK in G is obtained by replacing edges in TD by the corresponding
shortest paths.

3. Pre-processing Steps

In this first part, we apply some pre-processing steps to reduce the size of a given
instance of the Steiner tree problem.

Question 1 (Non-terminals of degree 1). Show that the edge connecting a non-
terminal of degree 1 in G cannot be in any Steiner minimal tree.

Question 2. Give the pseudo-code of this pre-processing step, implement the al-
gorithm, describe your data structure and show the results on scenarios 1 to 6 with
CPU times.

Question 3 (Non-terminals of degree 2). Suppose that a non-terminal vk is of
degree 2, let e1 = (vi, vk) and e2 = (vk, vj) be its two edges and let e = (vi, vj). We
take the convention that if e /∈ E, then c(e) =∞. Show that if c(e1)+ c(e2) ≥ c(e),
then there is at least one Steiner minimal tree not containing vk. Hence vk can be
deleted from G. Show that if c(e1) + c(e2) < ce, then the edge e cannot belong to
any Steiner minimal tree and can be deleted from G.

Question 4. Give the pseudo-code of this pre-processing step, implement the al-
gorithm, describe your data structure and show the results on scenarios 1 to 6 with
CPU times.
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Question 5 (Long edges). Show that any edge e = (vi, vj) ∈ E such that c(e) >
d(vi, vj), where d(vi, vj) is the minimum distance between vi and vj , can be deleted
from G.

Question 6. Give the pseudo-code of this pre-processing step, implement the al-
gorithm, describe your data structure and show the results on scenarios 1 to 6 with
CPU times.

4. Exact Algorithms

Although there is no known polynomial time algorithm for the Steiner tree prob-
lem, there are exact algorithms that solve the problem, at least for small instances.

4.1. Enumeration Algorithm. The Enumeration Algorithm, as its name sug-
gests, enumerates all the Steiner trees in the graph and chooses one with the min-
imum weight. In order to restrict the number of inspected trees, we rely on some
properties of Steiner trees (we don’t ask for proofs):

• Looking for a Steiner minimal tree in G is equivalent to find a Steiner
minimal tree in D.

• There exists a Steiner minimal tree for K in D where each Steiner vertex
is a branching point.

• There exists a Steiner minimal tree for K in D with at most k − 2 Steiner
vertices.

As a consequence, if we were given the set S of branching points, a Steiner minimal
tree in D would be a minimum spanning tree in the subgraph induced by K ∪ S of
cardinality |K ∪ S| ≤ 2k − 2.

Question 7. Based on these observations, give the pseudo-code of the Enumera-
tion Algorithm, implement it, describe your data structure and show the obtained
Steiner tree and its weight on scenarios 1 to 6 with CPU times.

Question 8. What is the complexity of the Enumeration Algorithm?

4.2. The Dreyfus-Wagner Algorithm. We now study a dynamic programming
approach for the Steiner tree problem. We will first compute Steiner minimal trees
for all 2-element subsets of K. We will then use these results to compute Steiner
minimal trees for all 3-element subsets of K, and so on and so forth.

For X ⊆ K and v ∈ V \X, let s(X ∪ v) denote the length of a Steiner minimal
tree for X ∪ v (with no restriction on the degree of v). Let sv(X ∪ v) denote the
length of a Steiner minimal tree for X ∪ v in which v has degree at least 2. These
values can be computed recursively.

Let T be a Steiner minimal tree for X ∪ v with no restriction on the degree of
v. For a leaf u in T , we denote Pu the longest path in T starting in u in which all
interior points have degree 2 in T and are non-terminals. We consider the following
cases:

• v has degree at least 2 in T . Then s(X ∪ v) = sv(X ∪ v). In this case, T is
the union of two Steiner minimal trees, one spanning X ′ ∪ v and the other
spanning X\X ′ ∪ v where ∅ 6= X ′ ( X.

• v is a leaf in T and Pv ends at a vertex w ∈ X. Then, T is the union
of a Steiner minimal tree for X and a shortest path from v to w. Hence,
s(X ∪ v) = s(X)+ d(v, w), where d(v, w) is the minimum distance between
v and w.



4 MARCEAU COUPECHOUX

Algorithm 1: Distance Network Heuristic

1: Input: A graph G = (V,E, c) and a terminal set K ⊆ V .
2: Output: A Steiner tree TG(K).
3: Compute the distance network D(K) between terminals
4: Compute a MST TD in D(K)
5: Transform TD into a subgraph of G by replacing every edge in TD by the

corresponding shortest path
6: Compute a MST T for the subgraph
7: Transform T into a Steiner tree for G by deleting leaves which are not

terminals (one at a time).
8: return

• v is a leaf in T and Pv ends at a vertex w /∈ X. Then w has degree at least
3 in T . T is the union of a Steiner minimal tree for X ∪ w and a shortest
path from v to w, i.e., s(X ∪ v) = sw(X ∪ w) + d(v, w).

Question 9. Based on these observations, derive two coupled recursive dynamic
programming equations for sv(X ∪ v) and for s(X ∪ v).

Question 10. Give the pseudo-code of the Dreyfus-Wagner Algorithm, implement
it, describe your data structure and show the obtained Steiner tree and its weight
on scenarios 1 to 6 with CPU times.

Question 11. What is the complexity of the Dreyfus-Wagner Algorithm?

5. Approximation Algorithms

Because of the exponential complexity of exact algorithms, it is preferable to
rely on polynomial heuristics for large instances.

5.1. Distance Network Heuristic. We start with an heuristic based on the com-
putation of a minimum spanning tree (MST) in the distance network. This heuristic
has a competitive ratio of 2. A rough pseudo-code is shown in Algorithm 1.

Question 12. Give a more detailed pseudo-code of the Distance Network Heuristic,
implement it, describe your data structure and show the obtained Steiner tree and
its weight on scenarios 1 to 6 with CPU times.

5.2. Shortest-Path Heuristic. Another heuristic, also with competitive ratio 2,
called the Shortest-Path Heuristic, consists in starting with an arbitrary terminal
in T , add to T a terminal not in T closest to T , determine a MST for the subgraph
of G induced by T , delete from the MST non-terminals of degree 1 and repeat this
procedure until there is no more terminal in G\T .

Question 13. Give a pseudo-code of the Shortest-Path Heuristic, implement it,
describe your data structure and show the obtained Steiner tree and its weight on
scenarios 1 to 6 with CPU times.

Question 14. Show that the Distance Network Heuristic and the Shortest-Path
Heuristic are polynomial-time algorithms.
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5.3. Statistical Analysis. We consider random connected networks with the fol-
lowing characteristics. There are n = 500 nodes, among which k = 50 terminals.
The network area is a square of side L = 1. Node locations are uniformly distributed
in the network area. Assume δ = 0.025. A communication between two nodes is
possible with cost 1, 2, 3, if their Euclidian distance is respectively less than δ, 2δ
and 3δ. If their distance is more than 3δ, there is no possible communication.

Question 15. Compare the statistical performance of the Distance Network Heuris-
tic and the Shortest-Path Heuristic.
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