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Abstract—This paper studies the coverage performance of
device-to-device (D2D) communication under the millimeter wave
(mmW) spectrum. The transmitter and receiver sides of users
are equipped with directional antennas and adopt beamform-
ing (BF). By considering a truncated Gaussian misalignment
assumption, we derive computationally tractable expressions of
the conditional rate coverage probability’s moments as a function
of the number of antenna elements. The Beta approximation of
the rate meta-distribution is obtained based on the first and
the second moment. The numerical simulations confirm our
analytical results. They show that the coverage performance can
deteriorate significantly due to misalignment. Furthermore, an
optimal number of antenna elements must be chosen to get the
best coverage. In addition, there exists an optimal number of
antennas which maximizes the number of users who satisfy the
reliability constraints. This optimal value is a function of the
reliability threshold.

Index Terms—Stochastic geometry, meta-distribution, beam-
forming, device-to-device, misalignment, URLLC.

I. INTRODUCTION

5G mobile networks are envisioned to support ultra-reliable,
and low latency communications (URLLC), which is targeted
for a packet transmission with 99.999% reliability [1]. This
stringent constraint calls for more innovations facing the rapid
increase in data transmission demands. The device-to-device
(D2D) communication concept, which allows direct communi-
cation without base stations, have been incorporated into 5G to
reduce unnecessary connections or hops. Through this method,
the traffic of the cellular network is mitigated by offloading the
traffic to alternative side links [2]. However, employing D2D
communication suffers from high interference and insufficient
bandwidth. Exploiting the millimeter wave (mmW) bands
seems to be a suitable solution for these problems [3], [4].
One of the critical drawbacks of mmW communication is that
it faces vast propagation loss. The directional antenna arrays
can be equipped to overcome the path loss, and beamforming
(BF) can be adopted.

Because of its mathematical flexibility, stochastic geometry
is widely used to evaluate the coverage, the throughput,
and the energy efficiency of the mmW D2D networks [5]–
[7]. The classical coverage probability refers to the average
success probability among all the users. Under the context of
URLLC, we are concerned not only by the network’s average
performance but also by the distribution of the performance
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metrics, e.g. to know what is the percentage of users satisfying
the reliability requirements. The meta-distribution for D2D
communication has thus been proposed to give a complete
characterization of the spatial distribution of the communi-
cation reliability [7]. Initial results have been then extended
in the literature. For example, the meta-distribution of the
underlay D2D communication in a cellular network is studied
in [8]. In [9] and [10], the meta-distribution for mmW D2D
networks are derived, where only the D2D transmitters are
equipped with multiple antennas.

In the existing works that study the meta-distribution of the
mmW D2D network, the beam alignment is however supposed
to be ideal. The maximum array gain is achieved by steering
the main beam in the desired direction during the beam
training period. However, in practice, a small misalignment
error may provoke severe performance deterioration, which
is confirmed by the existing works that study the coverage
performance of cellular network [11]. It has also been shown
in D2D networks [12], [13] in terms of coverage probability.
Thus the beam alignment error cannot be neglected and there is
no existing work studying the meta-distribution in conjunction
with this type of error.

The contribution of this paper is summarized as follows:

• We provide a closed-form and computationally tractable
formula for all the moments of the conditional rate
coverage probability in D2D networks with perfect BF
and antennas at both the transmitter and the receiver
(see Theorem 1). We extend this result to the case of
imperfect BF by considering a Gaussian misalignment
model (see Theorem 2). The rate meta-distribution is then
approximated using the Beta approximation.

• The simulations results show the accuracy of the ana-
lytical analysis and show that the Beta approximation
provides a good estimate of the meta-distribution. They
show that the coverage performance can deteriorate sig-
nificantly due to misalignment.

• We highlight the existence of an optimal number of
antennas that maximizes the (average) rate coverage
probability which depends on the error magnitude. We
also show that there is an optimal number of antennas
maximizing the number of users satisfying a reliability
requirement. This optimal number is dependent on the
required reliability.



In the rest of this paper, we introduce the system model
in Section II. Section III presents the analytical study of the
rate meta-distribution. The numerical results are shown in
Section IV. Section V concludes the paper.

II. SYSTEM MODEL

We study the mmW D2D network by considering the classi-
cal bipolar network model [7]. The transmitter-receiver pairs
are randomly located in a 2-dimensional space and perform
point-to-point data transmissions. The D2D transmitters form
a homogeneous Poisson point process (PPP) ΦT with intensity
λ. Without loss of generality, we assume that each transmitter
has a dedicated D2D receiver uniformly located on the circle
around the transmitter, with a constant radius R. We denote the
point process associated with the receivers by ΦR. A typical
receiver is assumed to be at the origin and attempts to receive
the data from the corresponding transmitter. According to the
Slivnyak theorem, the statistical characteristics do not change
for a PPP if we add a point in a particular position [14].

A. Beamforming

To compensate for the visible mmW propagation loss,
uniform linear array (ULA) is used at both transmitter and
receiver ends. For each pair, the transmit and receive beams
are required to be aligned toward each other. For the sake
of mathematical tractability, we simplify the actual antenna
pattern by the sectorized gain pattern based on the realistic
pattern of ULA [15]. This model consists of a main beam and a
side beam. The main beam gain is precisely the real maximum
gain of ULA. The side beam gain is calculated without
changing the average radiation intensity. Both transmitter and
receiver antenna arrays have the same half power beamwidth
(HPBW) ω, which corresponds to the angular aperture of the
main beam. For a ULA with n antenna elements, the HPBW
can be expressed as a function of n as follows [15]:

ω(n) = 2

(
π

2
− arccos

2.784

nπ

)
(1)

Let GTmax and GTmin represent the antenna gains of the
main and side beams at transmitter’s side. Respectively, we use
GRmax and GRmin to denote the antenna gain of the main and
side beams at receiver’s side. Specifically, we have GTmax =
2n, GTmin = ρ(n), GRmax = 2n2 and GRmin = nρ(n) [15].
Here ρ is a function of n as shown in (2):

ρ(n) =

∫ π
0

2
n

∣∣∣ sin( 1
2nπ cos θ)

sin( 1
2π cos θ)

∣∣∣2 dθ − 2nω(n)

π − ω(n)
(2)

To sum up, the array gain of a transmitter can be expressed
as follows:

gTa (θ, θ
T
0 ) =


GTmax, 0 ≤ |θ − θT0 | ≤ ω/2

GTmin, ω/2 ≤ |θ − θT0 | ≤ π/2

0, otherwise

(3)

where θ is the angle of departure (AoD) of the plane wave
with respect to a the linear array’s axis. We denote θT0 as the
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Fig. 1. Two D2D transmitter-receiver pairs (blue and rose) with misalignment.

boresight direction of the transmitter array (main lobe direc-
tion), which is decided by the beamformer [15]. Respectively,
the array gain of a receiver gRa (θ, θ

R
0 ) has a main lobe of gain

GRmax within the same HPBW around its boresight direction
θR0 , and a sidelobe of gain GRmin.

B. Misalignment Model

Consider a typical receiver device at origin O. Then ψo is
the angle of arrival (AoA) of the plane wave from its cor-
responding transmitter regarding the receiver antenna array’s
axis. Moreover, ξo is the AoD to the transmitter array’s axis.
We choose θT0 = θR0 = π/2 to ensure that the antenna arrays
are broadside antennas (boresight direction is perpendicular
to the axis). Ideally, the transmitter and receiver should be
face-to-face to align their main lobes of beams to each other.
That is to say ψo = ξo = π/2. Nevertheless, the alignment
is often not perfect in reality, so there is an alignment error
e as shown in Fig. 1. Thus ψo and ξo can be modelled as
random variables whose means are θR0 and θT0 . According to
the central limit theorem, the truncated Gaussian distribution
is a properly estimation of the alignment errors induced by
multiple independent sources. We assume that the errors have a
span from −π to π. The probability density function (PDF) of
ξo or ψo can thus be expressed by using the truncated Gaussian
distribution [16]:

fξ(x) =
1√
2πσ

exp(− 1
2 (
x−θT0
σ )2)

erf( π√
2σ

)
, x ∈ [θT0 − π, θT0 + π] (4)

C. Channel Model

For a typical active receiver located at the origin O and its
corresponding transmitter at xo, the total antenna gain of this
link is:

Go(ξo, ψo) = gRa (ψo, θ
R
0 )g

T
a (ξo, θ

T
0 ) (5)

Consider a link between a receiver located at origin O and an
interfering transmitter located at x. As shown in Fig. 1, ψx is
the AoA with respect to receiver’s array axis, and ξx is the
AoD with respect to transmitter’s array axis. Then the antenna
gain of this link can be expressed as follows:

Gx(ξx, ψx) = gRa (ψx, θ
R
0 )g

T
a (ξx, θ

T
0 ) (6)



We are interested in the Shannon rate R:

R =W log2(1 +
PhxoGo(ξo, ψo)ℓ(R)∑

x∈Φ\xo
PhxGx(ξx, ψx)ℓ(|x|) +N0W

)

(7)
where ℓ(·) is the path gain function: ℓ(x) = x−β , β ∈ N+

and β > 2. The small-scale fading coefficient associated with
the link from the transmitter at x to the receiver at origin
is denoted by hx, which has an exponential distribution with
unit mean (Rayleigh fading). Moreover, all users transmit with
the same power P . The noise power is N0W , where N0 and
W are the noise power spectral density and the bandwidth,
respectively.

III. META DISTRIBUTION

The meta-distribution defined in [7] describes the spatial
distribution of the devices’ communications’ reliability. Simi-
lar to the definition in [6], we define the rate meta-distribution
as a two-parameter distribution function as follows:

F̄Ps(η)(ϵ)
∆
= P!(Ps(η) > ϵ), ϵ ∈ [0, 1], θ ∈ R+. (8)

where Ps(η) is the conditional rate coverage probability or the
conditional success probability:

Ps(η)
∆
= P(R > η|ΦT ,ΦR) (9)

The classical coverage probability is its mean. The notation P!

denotes the Palm measure of {ΦT ,ΦR}, given that there is an
active receiver at the prescribed location. During a long period,
users may experience different communication conditions.
Thus the conditional rate coverage probability describes the
temporal success probability of a certain user. We call the
threshold ϵ as the reliability threshold of the network. It is
assumed that the communication is reliable if the probability
of the user getting a rate higher than η is larger than ϵ. Then
the rate meta-distribution F̄Ps(η)(ϵ) is designed to characterize
the spatial distribution of reliability.

A. Moments of the conditional rate coverage probability

Theorem 1. Consider a D2D network with the BF model
introduced in Section II. If the beam alignment is perfect,
the b-th moment of the conditional rate coverage probability
Mb(η) has the following expression:

Mb(η) = exp

(
−bη′ N0W

PGo(ξo, ψo)

)
exp(−λQb(η)) (10)

where η′ = 2
η
W −1
ℓ(R) , and Qb(η) is a function of b and η:

Qb(η) = lim
T→∞

T δδπ

4

∞∑
n=1

(
b
n

)
(−1)n+1B(δ, 1)

×
(
p22F1(n, δ, δ + 1,

−Go(ξo, ψo)T
G1η′

)

+ 2p(1− p)2F1(n, δ, δ + 1,
−Go(ξo, ψo)T

G2η′
)

+ (1− p)22F1(n, δ, δ + 1,
−Go(ξo, ψo)T

G3η′
)

)
(11)

where p = ω/π, δ = 2/β, G1 = 4n3, G2 = 2n2ρ and G3 =
nρ2. Function B(·, ·) is the Beta function and 2F1(·) is the
hyper-geometric function.

Proof. The proof is a special case of the proof of theorem 2.

B. Impact of misalignment

We define the matching probability as pma, which refers
to the case where ξo (respectively ψo) is within the HPBW
around θT0 (respectively θR0 ):

pma =

∫ θT0 +ω
2

θT0 −ω
2

fξodξo (12)

The effective probability pef specifies the probability that ξo
or ψo is within [0, π]:

pef =

∫ θT0 +π
2

θT0 −π
2

fξodξo (13)

With these notations, we have the following result:

Theorem 2. With beam misalignment, the b-th moment of
the conditional rate coverage probability has the following
expression:

Mb = p2ma exp

(
−bη′N0W

PG1

)
exp (−λQb(G1, η))

+2pma(pef − pma) exp

(
−bη′N0W

PG2

)
exp (−λQb(G2, η))

+(pef − pma)
2 exp

(
−bη′N0W

PG3

)
exp (−λQb(G3, η)) (14)

where Qb(Go, η) has the same expression as the right hand
side of the formula (11).

Proof. See Appendix A.

C. Beta approximation

The numerical computation of the exact rate meta-
distribution by using Gil-Pélaez theorem [7] is often difficult.
An alternative solution is to approximate it with a Beta-
distribution [7] by matching the first and the second moment
as follows:

F̄Ps(η)(ϵ) = 1− Iϵ(
M1M2 −M2

1

M2
1 −M2

,
(1−M1)(M2 −M1)

M2
1 −M2

)

(15)

where Iϵ(·) is the regularized incomplete beta function [9].

IV. NUMERICAL SIMULATION

At the beginning of the simulation, a specific configuration
of the network is decided by randomly choosing the locations
of the devices, where the location for each transmitter is
uniformly chosen in the plane, and the position of its cor-
responding receiver is uniformly chosen on a circle of radius
R around it. Assuming such a fixed spatial configuration, we
draw the value of the random variable hx for every link. The
Shannon rate is calculated for each receiver, and we count the
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Fig. 2. Mean of Ps(η) as a function of n with misalignment.
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Fig. 3. Variance of Ps(η) as a function of n with misalignment.

number of success transmissions for each pair for a given rate
threshold η. This process is repeated for sufficient number of
iterations in order to get the rate meta-distribution. Network
parameters are as follows: W = 1 MHz, β = 3.5, R = 30 m,
λ = 0.01 m−2 and η = 1 Mbps. The standard deviation in
Fig. 5 is σ = 0.05.

Fig. 2 shows the mean of Ps(η) as a function of n, in
presence of Gaussian misalignment. The solid curves show
the analytical results derived from (14). The dotted curves
are from the simulations results. The two sets of curves are
very close. When there is no misalignment, the average of
Ps(η) is increasing with the number of antennas. This can
be explained by the thinner beams which increase the useful
received signal power while reducing interference. When there
are misalignment errors, the coverage probability is decreasing
with the error amplitude. Moreover, the average coverage
probability is characterized by an optimal number of antennas.
Thinner beams are indeed more prone to misalignment errors
leading to a loss of coverage when the error is large. The
optimal number of antennas is a decreasing function of the
error magnitude due to this effect.

Figs. 3 and 4 show the variance of Ps as a function of the
number of antennas and of the error magnitude, respectively.
The difference between the simulation and the analytical
results is again relatively small. When σ is small, the variance
is small because the coverage is good enough in most cases.
On the contrary, most users cannot be covered when the error
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is strong, so the variance is also small. There is however
an intermediate zone where sometimes users are connected,
sometimes not, and the variance is relatively strong. This
explains the bell shapes of the curves. The value of σ, which
gives the maximum variance, gets smaller when the number
of antennas increases. This is because the beam is thinner and
we thus enter the intermediate interval with lower errors.

For a given value of the reliability threshold ϵ, we can
interpret the meta distribution as follows: There is a proportion
1 − FPs(η)(ϵ) of users who meet the reliability requirement.
The function ϵ 7→ 1−FPs(η)(ϵ) is precisely the complementary
cumulative distribution function (CCDF) of Ps(η), which is
shown in Fig. 5. The dotted curves are obtained by Monte
Carlo simulations, and the solid curves are the Beta approxi-
mation results.

First, note that the Beta approximation is a sufficiently good
approximation to analyze main performance trends. Curves
are decreasing because, if the reliability threshold increases,
there are less and less users meeting the requirement (see (8)).
For a fixed threshold ϵ, if a curve is above another, it means
that more users are meeting the reliability requirement; as a
consequence, the higher is the curve, the more reliable is the
network. Having this in mind, we see for example that n = 8
maximizes reliability for ϵ between 0 and 0.9 approximately,
but then n = 16 is the best option. There is thus an optimal
number of antennas which depends on the reliability threshold.

This also illustrates the fact that the best coverage does



not always imply the best reliability. When σ = 0.05, Fig. 2
shows that 4 antennas leads to a better average rate coverage
than 32 antennas. However, according to Fig. 5, we find that
32 antennas can cover more users if the reliability threshold
is high enough. These two metrics can be combined together
to evaluate the network performance comprehensively.

V. CONCLUSION

In this paper, we study the rate meta-distribution in a mmW
D2D network with beamforming. Transmitters and receivers
are both equipped with multiple antennas. The impacts of
beam misalignment under a truncated Gaussian alignment
error model are investigated. Our analytical and numerical
results show a strong impact of beam misalignment which
cannot be neglected in the analysis of coverage and when
requiring a certain reliability. We show that there exists an
optimal number of antennas that maximizes the (average) rate
coverage probability. This optimal number depends on the
error magnitude and the rate threshold. We also show that
there is an optimal number of antennas which maximizes the
number of users satisfying a reliability requirement. Moreover,
this optimal number is dependent on the required reliability.

APPENDIX A

Consider only the randomness of hx0
. The conditional

probability P(R > η|ΦT ,ΦR, hx) is a constant for given con-
figuration (ΦT ,ΦR) and given value of hx, for all x ∈ ΦT \xo.
According to the definition of rate in (7), it follows:

P(R > η|ΦT ,ΦR, hx)

=P

(
hxo > η′

∑
x∈ΦT \xo

PhxGx(ξx, ψx)ℓ(|x|) +N0W

Go(ξo, ψo)P

|ΦT ,ΦR, hx
)

(16)

=exp

(
−η′

∑
x∈ΦT \xo

PhxGx(ξx, ψx)ℓ(|x|) +N0W

Go(ξo, ψo)P

)
(17)

where η′ = 2
η
W −1
ℓ(R) and (18) comes from the fact that hx0

is
exponentially distributed with unit mean. The conditional rate
coverage probability Ps(η) can be written as follows:

Ps(η) = Ehx
[P(R > η|ΦT ,ΦR, hx)]

=Ehx

LN ∏
x∈ΦT \xo

exp

(
−η′Gx(ξx, ψx)

Go(ξo, ψo)
hxℓ(|x|)

) (18)

=LN
∏

x∈ΦT \xo

Go(ξo, ψo)

η′Gx(ξx, ψx)ℓ(|x|) +Go(ξo, ψo)
(19)

where LN = exp
(
−η′ N0W

PGo(ξo,ψo)

)
. We get (19) because the

channels hx, x ∈ ΦT are supposed to be i.i.d.. Each follows

an exponential distribution with unit mean. The b’s moment
of Ps(η) is the expectation of Ps(η)b w.r.t. ΦT and ΦR:

Mb(η) = EΦT [EΦR [(LN×

∏
x∈ΦT \xo

Go(ξo, ψo)

η′Gx(ξx, ψx)ℓ(|x|) +Go(ξo, ψo)

b

 (20)

= LN×

EΦT

 ∏
x∈ΦT \xo

Eξx

[(
Go(ξo, ψo)

η′Gx(ξx, ψx)ℓ(|x|) +Go(ξo, ψo)

)b]
(21)

= LN exp (−λQb(η)) (22)

where

Qb(η) =∫
R2

(
1− Eξx

[(
Go(ξo, ψo)

η′Gx(ξx, ψx)ℓ(|x|) +Go(ξo, ψo)

)b])
dx

(23)

We get (21) because ψx and |x| are deterministic values once
ΦR is fixed. The relative directions ξo and ψo within the typical
pair are independent on ΦT and ΦR. The process ΦR is a
conditional random measure that depends both on ΦT and
{ξx}, x ∈ ΦT , where ξx for different x ∈ ΦT are independent.
So the expectation with respect to ΦR in (20) can be replaced
by the expectation with respect to ξx in (21). The equation (22)
follows from the probability generation functional (PGFL) of
a Poisson point process [17]. We then transform the integral
part Qb into polar form. Since Gx(ξx, ψx) = 0 when −π <
ψx < 0, we get:

Qb(η) =

∫ ∞

0

∫ π

0

(
1−

Eξx

[(
Go(ξo, ψo)

η′Gx(ξx, ψx)ℓ(v) +Go(ξo, ψo)

)b])
dψxvdv (24)

Remind that ξx is uniformly distributed in [0, 2π]. Given that
Gx(ξx, ψx) = 0 when π < ξx < 2π, the integral Qb has the
following form:

Qb(η) =
1

2π

∫ ∞

0

∫ π

0

∫ π

0

(
1−(

1− η′Gx(ξx, ψx)ℓ(v)

η′Gx(ξx, ψx)ℓ(v) +Go(ξo, ψo)

)b)
vdξxdψxdv (25)

=
1

2π

∫ ∞

0

∫ π

0

∫ π

0

[
1−

∞∑
k=0

(
b
n

)(
− η′Gx(ξx, ψx)ℓ(v)

η′Gx(ξx, ψx)ℓ(v) +Go(ξo, ψo)

)n]
vdξxdψxdv

(26)



where (26) comes from the binomial series.

Qb(η) =
1

2π

∞∑
n=1

(
b
n

)
(−1)n+1×∫ ∞

0

∫ π

0

∫ π

0

(
η′Gx(ξx, ψx)ℓ(v)

η′Gx(ξx, ψx)ℓ(v) +Go(ξo, ψo)

)n
vdξxdψxdv

(27)

Let u = vβ and δ = 2/β. For b ∈ C we have :

Qb(η) = lim
T→∞

δ

4π

∞∑
n=1

(
b
n

)
(−1)n+1×∫ T

0

∫ π

0

∫ π

0

(
η′Gx(ξx, ψx)

η′Gx(ξx, ψx) +Go(ξo, ψo)u

)n
uδ−1dξxdψxdu

(28)

By replacing u with r = u/T , we get:

Qb(η) = lim
T→∞

T δδ

4π

∞∑
n=1

(
b
n

)
(−1)n+1×∫ 1

0

∫ π

0

∫ π

0

(
η′Gx(ξx, ψx)

η′Gx(ξx, ψx) +Go(ξo, ψo)Tr

)n
rδ−1dξxdψxdr

(29)

By adapting the definitions of gRa (ψx, θ
R
0 ) and gTa (ξx, θ

T
0 ), the

gain Gx has three non-negative values G1, G2 and G3 with
probability p2, 2p(1 − p) and (1 − p)2. The notation Qb can
be then written as follows:

Qb = lim
T→∞

T δδπ

4

∞∑
n=1

(
b
n

)
(−1)n+1

∫ 1

0

(
p2

(1 + Go(ξo,ψo)rT
G1

)n
+

2(1− p)p

(1 + Go(ξo,ψo)rT
G2

)n
+

(1− p)2

(1 + Go(ξo,ψo)rT
G3

)n

)
rδ−1dr (30)

The final expression in (11) is derived by replacing the integral
parts into hypergeometric functions.

When there is misalignment, the additional misalignment
of ξo or ψo doesn’t impact the distributions of ξx nor ψx.
Because ξx and ψx are all uniformly distributed with respect
to independent transmitters at x. So the only factor that is
impacted in (10) and (11) is Go. We define Qb(Go, η) as a
function of Go. It has the same expression as the right hand
side of (11). According to the definition of Go in (5) and the
definition of gRa (ψo, θ

R
0 ), g

T
a (ξo, θ

T
0 ), it is straightforward to

give the probability mass function (PMF) of Go as follows:

Go =


G1 p2ma

G2 2pma(pef − pma)

G3 (pef − pma)
2

0 else

(31)

Therefore when there is misalignment, the b’s moment of
Ps(η) is the expectation of Ps(η)b with respect to ΦT , ΦR

and also Go. The expression (14) is obtained by calculating
the expectation of formula (10) with respect to Go.
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