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Abstract—Mission-critical communications (MCC) involve all
communications between people in charge of the safety of the civil
society. MCC have unique requirements that include improved
reliability, security and group communication support. In this
paper, we propose secure and robust Multiple-Input-Multiple-
Output (MIMO) transceivers, designed for multiple Base Stations
(BS) supporting multicast MCC in presence of multiple eaves-
droppers. We formulate minimization problems with the Sum-
Mean-Square-Error (SMSE) at legitimate users as an objective
function, and a lower bound for the MSE at eavesdroppers as a
constraint. Security is achieved thanks to physical layer security
mechanisms, namely MIMO beamforming and Artificial Noise
(AN). Reliability is achieved by designing a system which is robust
to two types of channel state information errors: stochastic and
norm-bounded. We propose a coordinate descent-based algorithm
and a worst-case iterative algorithm to solve these problems.
Numerical results at physical layer and system level reveal the
crucial role of robust designs for reliable MCC. We show the
interest of both robust design and AN to improve the security
gap. We also show that full BS cooperation in preferred for
highly secured and reliable MCC but dynamic clustering allows
to trade-off security and reliability against capacity.

Index Terms—mission critical communication (MCC), physical
layer security, robust transceiver design

I. INTRODUCTION

Mission critical communications (MCC) are all communi-
cations between people in charge of the security and the safety
of the civil society. Employees of public safety services, like
policemen, firemen, rescue teams and ambulance nurses, but
also from large companies managing critical infrastructures
in the energy or transportation sectors require MCC for their
operations [1]. MCC are conveyed by dedicated Private Mobile
Radio (PMR) networks [2] that offer a group (or multicast)
communication service. This is a one-to-many or many-to-
many communication [3], which is one of the most important
features of PMR networks and is essential to manage teams
of employees. In 5G New Radio, group communication will
be supported for MCC from Release R17 onwards [4]. Due
to the critical aspects of their missions, MCC users also in-
herently require highly reliable and secure communication. In
particular, sensitive information should not leak to unintended
receivers although the broadcast nature of the wireless channel
makes the network vulnerable to malicious eavesdroppers.
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Multiple-Input-Multiple-Output (MIMO) technique appear to
be essential to address these MCC requirements. In this con-
text, we propose a physical layer secured MIMO transceiver
design for reliable multi-Base Stations (BS) multicast commu-
nication in the presence of malicious eavesdroppers.

In the 3rd Generation Partnership Project (3GPP), group
communication is based on Multimedia Broadcast/Multimedia
Service (MBMS) standards [2]. It thus naturally benefits from
the multicast transmission techniques [5]. In MBMS, the
reliability is improved by coordinating multiple BSs within
a so called synchronization area. When all BSs of the area
cooperate, we have a Multimedia Multicast/Broadcast Single
Frequency Network (MBSFN) transmission [6]. On the con-
trary, when BSs transmit independently, we have a Single-
Cell Point-to-Multipoint (SC-PTM) transmission [7]. Dynamic
clustering, offering a good trade-off between MBSFN and
SC-PTM is gaining popularity in the literature [8]–[10]. This
motivates our scenario of a multicast transmission from mul-
tiple BSs towards a group of users and provides us with a
framework for system level evaluations.

In order to ensure secure communication in the presence
of eavesdroppers, we rely on physical layer security [11]
mechanisms. They have the advantage of being independent
of the secret key generation and distribution [12]. Although
the use of long and complex keys is considered as one of
the important techniques against eavesdroppers, the advent of
powerful computational devices makes this approach indeed
vulnerable in the long term [13]. In this paper, we consider
physical layer security-based transceiver design for MCC by
exploring signal processing methodologies in the presence of
multiple eavesdroppers. Specifically, we incorporate security
in two ways: MIMO beamforming is used to achieve the
desired performance gain at legitimate users while degrading
eavesdroppers channel; and artificial noise (AN) is added at the
transmitter to guarantee additional security over the designed
transceivers.

In our design, we formulate a problem in which the Sum-
Mean-Square-Error (SMSE) is minimized at legitimate users
while ensuring a Minimum-Mean-Square-Error (MMSE) at
the eavesdroppers. This estimation-theoretic viewpoint is dif-
ferent from the information-theoretic one, usually adopted in
the literature [14]. The approach is motivated by the fact that
it leads to practical designs, while information-theoretic works
rely on random codes, which are not practical except in very
few cases. Further, in MCC, we mainly consider services with
fixed data rate like group video-conference [3], rate-based
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maximization is thus not a primary aim. At last, although
the approach does not provide any guarantee in terms of
secrecy capacity, it is well adapted to applications, like video-
conferencing, that require low Bite Error Rate (BER) and so
low Mean-Square-Error (MSE) to properly function [14]. To
better understand the performance of the proposed system, we
study the security gap which is the difference of the minimum
Signal-to-Noise Ratio (SNR) to guarantee a low BER at
legitimate users and the maximum SNR that guarantees high
BER at the eavesdroppers. With the goal of ensuring reliable
communication, we propose a design that is robust to Channel
State Information (CSI) errors. CSI is indeed never perfectly
known due to various reasons such as estimation errors,
feedback delays or pilot contamination. CSI errors thus affect
the reliability of the communication [15]. Hence, it is crucial
to design schemes that are resilient to such CSI imperfections.
In this paper, we design systems that are robust to either
Stochastic Errors (SE) or Norm-Bounded Errors (NBE) [16],
[17]. SE models are often used in the literature (see e.g. [18]
for a recent reference) to model errors arising from pilot aided
linear MMSE channel estimation [19]. NBE are considered to
be bounded within an ellipsoid or spherical region without
further information on the statistics of the errors [17]. We
perform a comparative analysis of both models in terms of
system performance.

A. Related Work

Physical layer security has been investigated for various
communication applications, most of which assume a simple
wiretap communication channel model [11], [20]. In this
setting, one legitimate transmitter (Alice) communicates with
one legitimate receiver (Bob) (thus in unicast) in the presence
of a single eavesdropper (Eve). Information theoretic aspects
of secrecy have been widely studied in the literature, see
e.g. [21], [22], our work however deals with signal process-
ing techniques to achieve secure communications [23]. From
the signal processing perspective, physical layer security has
been studied for simple wiretap channels in various contexts
such as AN-aided security [24]–[26], secure beamforming
techniques [27], [28], or diversity oriented security [29].
However, secured designs considering complex communica-
tion scenarios involving multiple transmitters, receivers and
eavesdroppers have been observed in the literature only over
the past decade. For example, uplink multiuser transmissions
are considered in [30] and relay-assisted security is studied
in [31]. The multicast scenario has been studied in [32]–[35],
however always while assuming a single transmitting BS. To
the best of our knowledge, secured multiple BS multicast
system design has not been reported in the literature. Specif-
ically in MCC, physical layer security has been considered
in [36]–[38] in the context of resource allocation problem [36],
or for authentication [37], [38], but only for machine-type
communications1. It is however worthwhile noting that no

1The expression ”mission-critical communications” has two acceptations in
the literature: 1) machine-type communications with delay-sensitive require-
ments; 2) communications between people in charge of the security and the
safety of the society. These two communication types are related to different
use cases and may have different requirements.

instance addressing the design of secure transceivers for MCC
group communications has been observed so far.

MCC group communications involve text, image, audio or
video exchanges in multicast. In this context, maximizing
the data rate or the secrecy rate, as it is done usually in
the literature, is not the main objective of operators. Instead,
together with the security, the correctness of the data is of
utmost importance. In our work, we thus consider a secure
SMSE minimization-based transceiver design in the presence
of multiple eavesdroppers. In the literature, only two instances
of MMSE-based secure precoder design have been respectively
discussed in [14] and [39], however, for a simple wiretap
communication scenario. These designs cannot be readily
adapted for the proposed system due to increased complexity
related to the presence of multiple coordinating BSs and
eavesdroppers. Moreover, the multicast transmission, which
consists of transmitting a common message to all legitimate
users, makes the processing at eavesdroppers easier and thus
requires a specific design.

The addition of AN for the secure design of communication
is either done in the null space of legitimate users, see e.g. [24],
[26], or is jointly designed with the precoder as in [31].
In this paper, we adopt a joint AN and transceiver design
approach, where an AN shaping matrix is designed by solving
the joint optimization problem and meet the overall design
constraints specific to the MCC. We confirm the interest of
such a technique in the specific scenario of MCC which
includes multi-BS multicast communication in the presence
of multiple eavesdroppers.

At last, to improve the system performance under realistic
channel uncertainties, robustness needs to be incorporated as
part of the design. Effectiveness of this approach is studied
in the literature for various wireless communication applica-
tions [40]–[42]. However, many existing works on physical-
layer secured transceiver design consider the availability of
perfect CSI knowledge of both legitimate users and eavesdrop-
pers. Robustness towards imperfect CSI has been considered
in [43]–[48]. Physical layer security with imperfect CSI for a
simple wiretap system is studied in [43]–[45] with an objec-
tive of secrecy rate maximization. Reference [46] considers
a system with multiple MISO transmitter-receiver point-to-
point communications in the presence of one single-antenna
eavesdropper. Authors optimize the secrecy rate under a power
constraint and the energy efficiency under a secrecy rate
constraint. Authors of [47] assume a single BS with multiple
single antenna users (a MISO system) and eavesdroppers. The
Signal-to-Interference-plus-Noise Ratio (SINR) gap is taken
as a metric for security. Finally, in [48], authors formulate a
multi-objective multicast and unicast secrecy rate optimization
problem for a single BS with multiple single antenna users (a
MISO system) and eavesdroppers. In our paper, we extend the
existing works to multiple BSs, users and eavesdroppers with
multiple antennas at every equipment; we assume multicast
traffic and formulate a MMSE minimization problem. A robust
design is proposed for both SE (when the error statistics can
be learned) and NBE models (when minimal prior knowledge
is available).

A preliminary version of this paper has been published
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in [49]. This reference neither include the security issue nor
the NBE model. The system level performance evaluation is
based on the work of [10], but this reference, which proposes a
clustering algorithm for MCC, does not implement any MIMO
transceiver design.

B. Contribution

In this paper, we propose a physical layer secured and
robust MIMO transceiver design for multi-BS multicast MCC
system in the presence of multiple eavesdroppers. The main
contributions of this work are summarized as follows:

• We formulate novel SMSE-based minimization problems
to capture the reliability and security requirements of
multicast MCC. Specifically, two optimization problems
(P1 and P2) are considered according to the type of CSI
errors, i.e., SE (Assumption 1) and NBE (Assumption 2).
Security aspects are tackled using MIMO beamforming
and AN and accounted in the miminization problems as
a lower bound constraint for the MSE of eavesdroppers.

• When SEs are assumed, we propose a coordinate descent-
based iterative algorithm to solve the SMSE minimization
problem (Algorithm 2). The algorithm is based on closed-
form equations for the MSE (Lemma 1) and the derived
gradients of the Lagrangian (Proposition 1).

• When NBEs are assumed, we adopt a worst-case ap-
proach and decompose the original problem into three
sub-problems. Resultant robust filters and AN shaping
matrix are obtained by sequentially solving individual
sub-problems in an iterative way (Algorithm 3).

• We provide numerical results at physical layer and system
level to gain insights for the proposed designs. Physical
layer simulations show the importance of robust designs
for ensuring highly reliable MCC, even when NBEs are
present. We also show the interest of AN for multicast
MCC to ensure secure communications. System level
simulations reveal that a full cooperation of the BSs in the
synchronization area is preferred for reliable and secured
MCC. If capacity becomes an important consideration,
dynamic clustering can be adopted at the expense of less
secured and reliable communications.

The paper is structured as follows: Section II describes the
network and transceiver models. The problem formulations
and the design of the transceivers are presented in Section III.
Physical layer and system level simulations are shown in
Section IV. Section V concludes the paper.
Notations: We use bold-faced lowercase letters to denote
column vectors and bold-faced uppercase letters to denote
matrices. For any matrix X, tr(X), E{X}, XH , and XT

denote trace, expectation, conjugate transpose, and transpose
operator, respectively. X1\X2 denote the set minus operation
between the sets X1 and X2.

II. NETWORK AND TRANSCEIVER MODEL

In this section, we present the network and transceiver
models.

Eavesdropper

BS inside the

synchronization area
BS outside the

synchronization area

Legitimate user

Serving BSs

Fig. 1: Network model: White and blue cells form the MB-
SFN synchronization area; blue cells are serving a group of
legitimate users (green diamonds) while a set of eavesdroppers
(red crosses) overhear the multicast communication.

A. Network Model

We consider the downlink of a cellular network dedicated
to MCC with BSs serving legitimate users. Every legitimate
user belongs to a multicast group, i.e., users of a given
group receive the same information from the network. Every
group is served by a cluster of coordinated BSs. In addition
to legitimate users, we assume the potential presence of
eavesdroppers, who listen to the transmitted information in
a passive mode, i.e., without any tampering of the legitimate
messages or active participation with the BSs. Fig. 1 shows
such a cluster of BSs communicating with a set of group users.
Among the BSs in the network, a set B of BSs are assumed to
be synchronized: they operate at same frequency and utilize the
same time/frequency resource block for communication. In the
terminology of MBMS, B is called a MBSFN synchronization
area. In Fig. 1, white and blue cells form the MBSFN synchro-
nization area, while grey cells are outside. We also assume a
perfect equalization at the receivers. Tight synchronization is
provided by the SYNC protocol in MBMS systems [50], while
equalization can be realized thanks to a linear MMSE [51].

In the proposed system, we consider a dynamic coordinated
cluster of BSs S ⊆ B (in blue in Fig. 1), for every group of
users U . When S = B, all BSs of the MBSFN synchronization
area cooperate to serve the group, this is called a full MBSFN
transmission. Cells outside B contribute to the co-channel
interference. When |S| = 1, we have a SC-PTM transmission.
In general, a subset S ⊆ B is dynamically selected for every
group. In this case, cells in S cooperate, while cells in B\S
and cells outside the MBSFN synchronization area contribute
to the co-channel interference. In this paper, we consider a
greedy clustering algorithm, where the cluster is formed by
progressively selecting K ′T best BS on the basis of maximum
Signal to Interference plus Noise Ratio (SINR) achieved at
the group users (see Algorithm 1). We first include in S the
BSs that provide the highest receive power to every user. If
|S| ≤ K ′T , we complete with K ′T − |S| BSs providing the
highest sum SINR to group users. K ′T is considered as a design
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parameter that controls the minimum cluster size. The greedy
clustering algorithm and its variants are widely adopted in the
literature related to multi-point cooperation, see e.g. [8], [52].
We denote KT as the number of BSs eventually selected by
Algorithm 1.

Algorithm 1: Greedy Clustering
1: Input: Locations of BSs and group users, K ′T ≤ |B|:

minimum cluster size
2: Init: S ← ∅
3: for every user do
4: Find the BS t providing the highest receive power
5: S ← S ∪ {t}
6: end for
7: if |S| < K ′T then
8: Find the set S ′ of K ′T − |S| BSs maximizing the

sum SINR for group users
9: S ← S ∪ S ′

10: end if
11: return S

B. Transceiver Model

To analyze the transmission towards a group of users,
we consider the secure multi-user MIMO multicast wireless
communication scenario as shown in Fig. 2, where the KT BSs
of cluster S multicast a common message to KR legitimate
user-equipments (UEs) in a group. The transmitted signal is
assumed to be overheard by KE passive eavesdroppers. All the
nodes in the system are considered to be equipped with MIMO
processing, where each BS, UE and Eve have NT , NR and NE

antennas respectively. Each BS multicasts a time-slotted Ns

dimensional column vector d with transmit power PT , where
Ns is the number of parallel data streams transmitted by the
BS. The data d is considered to be mutually independent, so
that E[ddH ] = INs . Before transmission, the data vector is
processed by a (NT ×Ns) dimensional precoder matrix Vt at
the t-th BS, t = 1, · · · ,KT . In order to improve security, we
introduce an additional AN vector zt of size (NT×1) with zero
mean and variance E[ztz

H
t ] = σ2

ztINT
at the t-th transmitter.

The presence of AN has the goal of depleting the information
leak to eavesdroppers. Furthermore, an AN-shaping matrix
Wt of size (NT × NT ) is considered to regulate the effect
of AN in the overall design. Transceivers and AN-shaping
matrix are jointly designed and this information is supposed
to be shared between the transmitters and the legitimate users.
Hence the signal transmitted from t-th BS is given by:

xt = Vtd + Wtzt (1)

and the total transmit power at t-th BS is given by:

Pt , E[||xtx
H
t ||]. (2)

We denote the true channel gain between the t-th BS and
the l-th legitimate UE and between the t-th BS and the
e-th eavesdropper by Ctl (with dimension NR × NT ) and
Gte of dimension NE ×NT , respectively. We assume quasi-
static Rayleigh fading channels that remain static over one

transmission time-slot. Consequently, the received signal yl at
legitimate UE l is given by:

yl =

KT∑
t=1

CtlVtd +

KT∑
t=1

CtlWtzt + nl (3)

where nl is the NR-dimensional zero mean random white
Gaussian noise vector at the l-th UE’s receive antennas with
E[nln

H
l ] = σ2

nlINR
. The random noise vector is uncorrelated

with the data vector, so that E[nld
H ] = 0. The received signal

at the UE l is estimated as d̂l (of dimension Ns × 1) after
passing through a NR ×Ns dimensional receive filter matrix
Rl. The estimated data is given by:

d̂l = Rl

KT∑
t=1

CtlVtd + Rl

KT∑
t=1

CtlWtzt + Rlnl. (4)

Thus, the MSE at the l-th legitimate UE is expressed as:

εl , E[||d− d̂l||2]. (5)

Similarly at the eavesdroppers, the received signal ye at the
e-th eavesdropper is given as:

ye =

KT∑
t=1

(
GteVtd + GteWtzt

)
+ ne (6)

where ne is the random white Gaussian noise vector of size
NE × 1 at the e-th eavesdropper’s antenna elements with zero
mean and covariance E[nen

H
e ] = σ2

neINE
. The random noise

vector is uncorrelated with data vector such that E[ned
H ] = 0.

In this work, we assume that eavesdropper implements a
classical MMSE linear receive filter. However, it can replaced
with any other linear receiver models such as zero-forcing,
matched filter, etc. In our previous work [49], we performed
the comparative analysis of utilization of different filters for
legitimate users and concluded that MMSE-based receiver
was performing the best. With the intention to provide same
benefits to the eavesdroppers and for the ease of readiness we
assume the eavesdropper filters to be implemented as MMSE
filter. The considered MMSE receive filter at e-th eavesdropper
is given as:

Ee =
( KT∑

t=1

VH
t GH

te

)( KT∑
t=1

GteVtV
H
t GH

te + σ2
neI
)−1

.

(7)

Eavesdroppers do not have the information about the presence
of AN in the received signal and hence Wtzt is not considered
in the MMSE receive filter design. After passing ye through
the NE × Ns receive filter Ee, the estimated data de at the
e-th eavesdropper is given by:

de = Ee

KT∑
t=1

GteVtd + Ee

KT∑
t=1

GteWtzt + Eene. (8)

Thus, the MSE at the e-th eavesdropper can be obtained as:

εe , E[||d− de||2]. (9)
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Fig. 2: System diagram for multi-BS multicast scenario in the presence of multiple passive eavesdroppers for MCC .

Furthermore, we incorporate imperfect CSI knowledge at the
receivers as follows. The true channel between the t-th BS and
the e-th Eve is modeled as:

Gte = Ĝte + ∆te (10)

where Ĝte is the available erroneous estimate of CSI and ∆te

refers to the corresponding channel uncertainties. It is assumed
here that a eavesdropper’s CSI estimate have been obtained
using some detection scheme, such as the ones described
in [53] [54] and is thus available. In the same way, the CSI
knowledge of legitimate users may not always be perfect, so
that a robust transceiver design is required. The true channel
between the t-th BS and the l-th user is modeled as:

Ctl = Ĉtl + ∆tl (11)

where Ĉtl is the erroneous channel estimate and ∆tl cor-
responds to channel uncertainties. We consider two ways
of modeling the error ∆te and ∆tl. The first one assumes
that the errors statistics have been learned from previous
measurements. The second is valid when only a rough estimate
of the noise power is available. Hence, we define the following
assumptions.

Assumption 1 (SE model). CSI errors ∆te and ∆tl are mod-
eled as Gaussian random variables such that E[∆te∆

H
te] =

σ2
teI and E[∆tl∆

H
tl ] = σ2

tlI.

Assumption 2 (NBE model). CSI errors ∆te and ∆tl are
modeled using the NBE model, also known as deterministic-
bounded error model [42], where ∆te and ∆tl are respec-
tively taken in continuous sets, called uncertainty regions,
defined by:

Gte = {∆te : ||∆te||2 ≤ τte} (12)
Ctl = {∆tl : ||∆tl||2 ≤ τtl} (13)

where τte and τtl denote the radii of the uncertainty regions.

The channel errors for both legitimate UEs and eavesdrop-
pers are considered to be uncorrelated with the transmitted

data sequence as well as to the additive white noise vector, i.e.,
E[d∆t,l] = 0, E[nl∆t,l] = 0 for all t, l and E[d∆t,e] = 0,
E[ne∆t,e] = 0 for all t, e. We now specify that the expecta-
tions in (5) and (9) are considered over data, channel matrix,
noise and estimation errors.

III. SECURE TRANSCEIVER DESIGN

In this section, we present our robust and secure transceiver
design.

A. Stochastic CSI Errors

Our goal is to obtain the optimal precoder, receive filter, and
AN-shaping matrices Vt, Rl, and Wt for secure communi-
cations at all the BSs and legitimate UEs while minimizing
the overall SMSE of the legitimate UEs under the constraint
of a maximum transmit power at every BS and a minimum
MSE for every eavesdropper. In this sub-section, Assumption 1
is considered. Our joint optimization problem can thus be
formulated as follows:

minimize
Vt,Wt,Rl

t=1...KT ,l=1...KR

KR∑
l=1

εl

subject to C1 : εe ≥ Γ ∀e ∈ {1, · · · ,KE}
C2 : Pt ≤ PT ∀t ∈ {1, · · · ,KT }.

(P1)
The MSE εl and εe at the legitimate user l and eavesdropper
e are obtained using (5) and (9), respectively. The transmit
power Pt at t-th BS is given by (2). In C1, Γ is a design
parameter that represents the lower bound on the achievable
MSE expected at each eavesdropper. In C2, PT is the maxi-
mum transmit power at every BS.
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Lemma 1. With Assumption 1, we have the following result:

Pt = tr(VtV
H
t + σ2

ztWtW
H
t ) (14)

εl = tr(I)− tr(

KT∑
t=1

RlĈtlVt)− tr(

KT∑
t=1

VH
t ĈH

tl R
H
l )

+tr(

KT∑
t=1

RlĈtlVtV
H
t ĈH

tl R
H
l )

+tr(

KT∑
t=1

σ2
ztRlĈtlWtW

H
t ĈH

tl R
H
l )

+σ2
nltr(RlR

H
l ) +

KT∑
t=1

σ2
tlσ

2
zttr(RlR

H
l )tr(WtW

H
t )

+

KT∑
t=1

σ2
tltr(RlR

H
l )tr(VtV

H
t ) (15)

εe = tr(I)− tr(

KT∑
t=1

EeĜteVt)− tr(

KT∑
t=1

VH
t ĜH

teE
H
e )

+tr(

KT∑
t=1

EeĜteVtV
H
t ĜH

teE
H
e )

+tr(

KT∑
t=1

σ2
ztEeĜteWtW

H
t ĜH

teE
H
e ) + σ2

netr(EeE
H
e )

+

KT∑
t=1

σ2
teσ

2
zttr(EeE

H
e )tr(WtW

H
t )

+

KT∑
t=1

σ2
tetr(EeE

H
e )tr(VtV

H
t ). (16)

Proof: See Appendix A.

Proposition 1. With Assumption 1, the optimal transceiver
and AN shaping matrices verify:

Vt = (At)
−1
( KR∑

l=1

ĈH
tl R

H
l −

KE∑
e=1

λeĜ
H
teE

H
e

)
(17)

Wt = Bt/
√

tr(BtBH
t ) (18)

Rl =
( KT∑

t=1

VH
t ĈH

tl

)( KT∑
t=1

ĈtlVtV
H
t ĈH

tl

+

KT∑
t=1

σ2
ztĈtlWtW

H
t ĈH

tl + σ2
nlI

+

KT∑
t=1

σ2
tltr(VtV

H
t )I

+

KT∑
t=1

σ2
tlσ

2
zttr(WtW

H
t )I

)−1
(19)

where

Bt = I−AH
t (AtA

H
t )−1At (20)

At =

KR∑
l=1

ĈH
tl R

H
l RlĈtl +

KR∑
l=1

σ2
tltr(RlR

H
l )

Algorithm 2: Iterative procedure to obtain transceiver
filters for SEs

1: Input: β, KT , KR, KE , Ĉtl, Ĝte, σnl, σne, PT , Γ ∀
t ∈ {1, · · · ,KT }, l ∈ {1, · · · ,KR}, and
e ∈ {1, · · · ,KE}

2: Init: Randomly generate Vt, Wt ∀t ∈ {1, · · · ,KT },
ε′l ← 0, εl ← 0 ∀l ∈ {1, · · · ,KR}

3: repeat
4: ε′l ← εl ∀l ∈ {1, · · · ,KR}
5: Update Ee ∀e ∈ {1, · · · ,KE} using (7)
6: Update Rl using Vt, Wt in (19)

∀l ∈ {1, · · · ,KR}
7: Solve for λe and λ

′

t using C1, C2
∀t ∈ {1, · · · ,KT }, and ∀e ∈ {1, · · · ,KE}

8: Update Vt using λe, λ
′

t, Rl, Ee in (17)
∀t = {1, · · · ,KT }

9: Update Wt using Vt in (18) ∀t = {1, · · · ,KT }
10: Compute εl using Vt, λe, λ

′

t, Wt, and Rl in (15)
11: until |εl − ε′l| ≤ β ∀l ∈ {1, · · · ,KR}
12: return Vt, Wt ∀t ∈ {1, · · · ,KT }, Rl, εl
∀l ∈ {1, · · · ,KR}

−
KE∑
e=1

λeĜ
H
teE

H
e EeĜte −

KE∑
e=1

λeσ
2
tetr(EeE

H
e )

+λ
′

tI (21)

and where λe ≥ 0, and λ
′

t ≥ 0 are the Lagrangian multipliers,
which are calculated such that the constraints C1, and C2 are
satisfied respectively.

Proof: See Appendix B.
From the lemma, we observe that the objective function

is jointly non-convex. It is convex in every variable Vt, Wt

and Rl but includes C1, which is a concave constraint. The
problem is thus non-convex. In order to simplify the resolution,
we adopt a block coordinate descent approach [55]: in a
cyclic way, a block of variable is optimized while keeping
others as fixed, leading to the iterative resolution of sub-
problems. As every sub-problem is non-convex, we look
for a Karush-Kuhn-Tucker (KKT) solution. KKT is here a
necessary condition, we don’t have any guarantee on the local
optimality or on the dual gap. The found solution is thus only
a good stationary candidate. The resulting iterative procedure
is shown in Algorithm 2. In step 7, the Lagrange multipliers
λe,∀e and λl,∀l are obtained by solving the set of non-linear
equations from constraints C1 and C2 by using the function
fsolve from Matlab, which implements a dogleg trust-region
algorithm [55].

Complexity analysis – Let us denote N =
max(NT , NR, NE , Ns) and K = max(KT ,KR,KE).
N is an upper bound on the number of antennas per device
and the number of data streams; K is related to the number
of devices involved in the communication. The computation
of Ee in (7), Rl in (19), Vt in (17), and Wt in (18) are
dominated by K inversions of matrices of size N , so that their
complexity is in O(KN3). The computation of εl involves a
sum of matrix multiplications and is thus in O(KN3). The
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dodleg algorithm implemented in fsolve is an iterative
algorithm which achieves a ε-approximation of the solution
with complexity O(K3ε−3) when using fully quadratic
models in the derivative-free case with 2K unknowns [56].

Lemma 2. Let I2 be the number of iterations of Algorithm 2
and ε > 0 the accuracy of fsolve. The complexity of
Algorithm 2 is at most O(I2KN

3 + I2K
3ε−3).

Convergence analysis – The coordinate descent algorithm
generate sequences whose limit points are stationary if the
objective function is continuously differentiable and the mini-
mum along every coordinate is uniquely attained [57]. In our
case, the objective is indeed continuously differentiable but
we are not able to ensure the uniqueness of the minimum in
the sub-problems. We instead only look for a KKT solution
in every sub-problem. As the global problem is non-convex,
we cannot hope convergence towards a global optimum. We
can however reach an epsilon approximation of a stationary
point because the objective function is decreased at every
iteration [58]. In our simulations, I2 = 10 iterations are
generally sufficient to achieve convergence (see Fig. 10 and
the related discussion in Section IV-A).

B. Norm-bounded CSI errors

In this sub-section, we consider Assumption 2 for the
system design, i.e., we assume that CSI errors are only norm
bounded. In this case, the problem formulation can be written
as:

minimize
Vt,Wt,Rl

t=1...KT ,l=1...KR

KR∑
l=1

εl

subject to C1, C2

C3 : ∆te ∈ Gte, ∀t,∀e
C4 : ∆tl ∈ Ctl ∀t,∀l.

(P2)

Note that C3 and C4 can be seen as an infinite number
of constraints. This problem is indeed a robust optimization
problem in the sense that there is a nominal problem corre-
sponding to ∆te = ∆tl = 0 and uncertainty sets Gte and Ctl
for these two parameters.

In order to tackle this problem, we follow a worst-case
approach, in which, the SMSE of legitimate users is minimized
for the worst-case error ∆tl subject to the constraint and, with
the worst-case error ∆te, the MSE of the eavesdroppers is
maintained above the predefined threshold. In other words,
we try to minimize the maximum achievable SMSE at the
legitimate users under the norm-bounds of CSI errors. While
for the eavesdroppers, we optimize the system to achieve the
threshold bound for the minimum achievable MSE. This leads
to this new formulation:

minimize
Vt,Wt,Rl

t=1...KT ,l=1...KR

max
∆tl∈Ctl

KR∑
l=1

εl

subject to C2

C5 : min
∆te∈Gte

εe ≥ Γ ∀e.

(P̄2)

In this formulation, the objective function is replaced by
its robust counterpart, i.e., the largest value of the original
objective over all realizations of the error ∆tl. Said differently,
this is the worst-case cost. In the same way, constraint C1 is
replaced by a robust counter part C5, i.e., the worst-case MSE
over all realizations of the error ∆te.

Robust counterpart problems can be efficiently solved in
specific cases by deriving an explicit and tractable set of
constraints, e.g., when the objective function is linear and
the uncertainty sets are polytopic or ellipsoidal [59], [60].
However, the robust counterpart of convex problems is in
general NP-hard [61]. In our work, the problem is not even
convex.

A possible approach to deal with non-convex robust prob-
lems is the method of outer approximations [62], also known
as the cutting-set method [63]. This approach proceeds by
iterations: the problem is solved assuming a finite set of
constraints for ∆te and ∆tl (starting with a single fixed value);
then the problem associated to the constraint (e.g. C5 above)
is solved and optimal values of ∆te and ∆tl are added to
the finite set used in the first stage. This leads to a sequence
of sub-problems. The method is known to be computationally
intensive because the number of constraints increases at every
iteration. In our case, the resolution of the sub-problems
becomes even untractable. We thus retained in the constraint
set only the latest optimal values for the uncertain parameters.

1) Sub-problem P̄ ′2: In the first sub-problem, we compute
the optimal precoder Vt, receive filter Rl and AN covariance
matrix Wt while the worst-case channel errors ∆te and ∆tl

are supposed to be known. The first optimization sub-problem
can be thus written as:

minimize
Vt,Wt,Rl

t=1...KT ,l=1...KR

KR∑
l=1

εl

subject to C1, C2.

(P̄ ′2)

The optimization problem is similar to (P1) and can be solved
using the proof given in Appendix B by replacing σ2

tl by
||∆tl||2, and σ2

te by ||∆te||2.
2) Sub-problem P̄ ′′2 : In this sub-problem, the transceiver

matrices and the worst-case error ∆te are supposed to be
known and we look for the worst-case error ∆tl. We can thus
formulate the second sub-problem as:

minimize
∆tl

t=1...KT ,l=1...KR

−
KR∑
l=1

εl

subject to C4 : ||∆tl||2 ≤ τtl ∀t,∀l.

(P̄ ′′2 )

The Lagrangian is given by:

L(∆tl, κtl) = −
KR∑
l=1

εl +

KT∑
t=1

KR∑
l=1

(κtl(||∆tl||2 − τtl))

= −
KR∑
l=1

εl +

KT∑
t=1

KR∑
l=1

(κtl(tr(∆tl∆
H
tl )− τtl))

(22)
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Algorithm 3: Iterative procedure to obtain transceiver
filters for NBEs

1: Input: β, KT , KR, KE , Ee, Ĉtl, Ĝte, τtl, τte, PT ,
Γ ∀ t ∈ {1, · · · ,KT }, l ∈ {1, · · · ,KR}, and
e ∈ {1, · · · ,KE}

2: Init: Randomly generate Vt, Wt ∀t ∈ {1, · · · ,KT },
∆tl ∈ Ctl, ∆te ∈ Gte, εl ← 0 ∀t ∈ {1, · · · ,KT },
l ∈ {1, · · · ,KR}, e ∈ {1, · · · ,KE}.

3: repeat
4: ε′l ← εl ∀l ∈ {1, · · · ,KR}
5: Solve P̄ ′2 and update Vt, Wt, Rl using ∆tl, ∆te,

Ee and Algorithm 2 ∀t ∈ {1, · · · ,KT },
l ∈ {1, · · · ,KR}, e ∈ {1, · · · ,KE}.

6: Solve P̄ ′′2 and update ∆tl using Vt, Wt, Rl in
(26) ∀t ∈ {1, · · · ,KT }, l ∈ {1, · · · ,KR}.

7: Solve P̄ ′′′2 and update ∆te using Vt, Wt, Ee in
(27) ∀t ∈ {1, · · · ,KT }, e ∈ {1, · · · ,KE}.

8: Compute εl using Vt, Wt, and Rl, ∆tl, ∆te in
(15).

9: until |εl − ε′l| ≤ β ∀l ∈ {1, · · · ,KR}.

where κtl ≥ 0 are the Lagrange multipliers associated to
constraints C4. Considering (15), it is observed that solv-
ing (P̄ ′′2 ) is difficult. To simplify the solution, we consider an
approximation of εl by ignoring the second and higher order
terms of ∆tl. With this approximation, the problem becomes
convex and can be solved exactly (with zero dual gap). Taking
the partial derivatives of the Lagrangian with respect to ∆H

tl

and to κtl, respectively, and equating to zero we obtain:

∆tl =
1

κtl
(RH

l VH
t + RH

l RlĈtlVtV
H
t

+σ2
ztR

H
l RlĈtlWtW

H
t ) (23)

τtl = tr(∆tl∆
H
tl ). (24)

Injecting (23) in (24), we obtain the Lagrange multipliers:

κtl =
1
√
τtl
||(RH

l RlĈtlVtV
H
t + σ2

ztR
H
l RlĈtlWtW

H
t

+RH
l VH

t )||. (25)

Using the value of κtl in (23), we get the following lemma.

Lemma 3. The worst-case error ∆tl that provides the
maximum SMSE at the legitimate UEs for given optimal
transceivers and AN while satisfying the norm-bound con-
straint τtl is given by:

∆tl =
√
τtl

Υtl

||Υtl||
(26)

where

Υtl = RH
l VH

t + RH
l RlĈtlVtV

H
t + σ2

ztR
H
l RlĈtlWtW

H
t .

3) Sub-problem P̄ ′′′2 : In this third sub-problem, the
transceiver matrices and the worst-case error ∆tl are supposed
to be known and we look for the worst-case error ∆te. It can
be found by solving the problem defined in constraint C5. The
sub-problem can thus be written as:

minimize
∆te,t=1...KT

εe ≥ Γ

subject to C3 : ||∆te||2 ≤ τte ∀t.
(P̄ ′′′2 )

We adopt here the same approach as for (P2”) and solve
exactly the problem (with zero dual gap).

Lemma 4. The worst-case error ∆te that provides the MMSE
at the eavesdroppers for given optimal transceivers and AN
while satisfying the norm-bound τte is given by:

∆te = −
√
τte

Υte

||Υte||
(27)

where

Υte = EH
e VH

t + EH
e EeĜteVtV

H
t + σ2

ztE
H
e EeĜteWtW

H
t .

A stationary solution for (P̄2) is now obtained by a three
step iterative process as given in Algorithm 3. We first obtain
the optimal solution considering that the channel errors are
known. Afterwards, the worst case channel errors are com-
puted considering the optimal solution is known.

Complexity analysis – The computation of εl using (15)
is again in O(KN3). The computation of ∆tl and ∆te

involves K matrix multiplications and is thus O(KN3). The
complexity of Algorithm 3 is thus dominated by the inner loop
constituted by Algorithm 2.

Lemma 5. Let I3 be the number of iterations of Algorithm 3.
The complexity of Algorithm 3 is at most O(I3I2KN

3 +
I3I2K

3ε−3).

Convergence analysis – The cutting-set method is known to
converge to a first-order stationary point [62]. In our case, we
are not able to guarantee such a convergence because of the
introduced simplification in the method. As suggested by [64],
we can however interpret the robust problem as a dynamic
game between two players. Player 1 tries to minimize the
objective function by setting the optimization variables, while
Player 2 tries to maximize it by setting the uncertainty realiza-
tions. In this framework, our algorithm can be interpreted as
a best response algorithm and we know that if this algorithm
converges, it converges to a Nash equilibrium of the game.
Moreover, we observe in our simulation that generally I3 = 8
iterations are sufficient to achieve convergence of the algorithm
(see Fig. 10 and related discussion in Section IV).

IV. NUMERICAL RESULTS

In this section, we illustrate the performance of our designs
with numerical simulations at physical layer and at system
level.

A. Physical Layer Simulations

In physical layer simulations, there is no co-channel inter-
ference and both legitimate UEs and eavesdroppers experience
the same path-loss. In results, we refer to the Non-Robust
(NR) design, Robust (R) design, SE and NBE. Unless other-
wise specified, the simulation parameters are the following:
KT = 4, KR = 8, KE = 2, NT = 16, NR = 8,
NE = 4, and Ns = 2; PT = 0 dBm; σ2

nl = PT /SNR,
l = 1, 2, ..,KR, σ2

ne = PT /SNR, e = 1, ..,KE , where
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Fig. 3: BER at legitimate UEs (leg) vs. transmit SNR (in
dB) with non-robust (NR), robust with SEs (R-SE) and robust
with NBEs (R-NBE) designs (KT = 8, KR = 16, KE = 4,
eavesdroppers experience NBE with τte = 0.09).

SNR is the transmit SNR. For the R-SE design, σ2
tl = 0.04

and σ2
te = 0.09. For the R-NBE design, τtl = 0.04 and

τte = 0.09. AN variance is σ2
zt = 0.09. The target MSE

threshold at each eavesdropper is Γ = 0.5, a value that leads to
high BERs according to our simulations. We assume a QPSK
modulation and average performance metrics over 106 data
samples for every simulation. In Algorithm 2 and 3, β = 10−4.
Video conferencing requires a typical Bit Error Rate (BER) of
10−4 [65]. In 5G NR, the MCC video service is mapped on
the quality of service indicator QCI67 [66], which requires a
packet loss rate of 10−3. This can lead to typical BERs of
10−6 or 10−7 after channel decoding for a packet length of
1000 Bytes. In the numerical results below, we thus observe
typical BERs between 10−4 and 10−6 for legitimate users.

1) Effect of CSI errors: Fig. 3 shows the BER as a function
of the transmit SNR for robust and non-robust designs at
legitimate UEs. We observe the interest of designing a system
robust to CSI errors to improve the reliability of MCC: up to
6 dB gain can be achieved at low BER when assuming SEs. As
expected, the performance in presence of NBEs is worse than
with SEs. This is due to the higher noise uncertainty: noise
is drawn in a sphere of known radius but there is no further
statistical knowledge about it. Nevertheless, NBE-based robust
design achieves a 3 dB gain at low BER.

Fig. 4 shows the effect of different channel error variances
on the MSE at legitimate UEs, which is our objective in the
proposed minimization problems. Obviously the scenario with
perfect CSI performs the best. Then, as expected, the higher
the channel errors the lower the performance. The knowledge
of the probability distribution function of noise (SE) is a clear
advantage over sole knowledge of an upper bound (NBE) for
a robust design.

We observe in Fig. 4 that the MSE is increasing with
the SNR after a certain threshold when NR designs are
considered. The MSE at legitimate users is indeed made of
several components. In particular, the last two terms of (15)
are due to CSI errors and are increasing with the signal power,
whereas other components are decreasing and tend towards
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0.8
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1.2

Fig. 4: MSE at legitimate UEs (leg) vs. transmit SNR (in dB)
with perfect CSI, non-robust (NR) and robust (R) designs with
SEs or NBEs (PT = 20 dBm, eavesdroppers experience NBE
with τte = 0.09).

Fig. 5: BER vs. transmit SNR (dB) and BER Security gap for
non-robust, robust with NBE and robust with SE (target BER
of 0.3 for eavesdroppers, target BER of 10−4 for legitimate
UEs).

zero. In NR designs, receive filters do not compensate for
these terms because CSI is supposed to be perfect, so that the
overall MSE starts increasing when the CSI error component
becomes preponderant.

2) Security Gap: The security gap is a measure of the
secrecy level based on the BER performance of legitimate
UEs and eavesdroppers. The security gap is defined as Sg =
SNRL

min − SNRE
max where SNRL

min is the minimum SNR
at a legitimate UE to achieve high reliability (e.g. 10−4 in
our simulations) and SNRE

max is the maximum SNR that
guarantees a high BER at a eavesdropper (e.g. 0.3). Below
SNRE

max at eavesdroppers, the communication is secure,
above SNRL

min at legitimate UEs, the communication is
reliable. The gap quantifies the advantage a legitimate UE
should have over eavesdroppers in order to have a secure and
reliable communication. We see in Fig. 5 (left) that multi-user
MIMO and AN leads already to a small security gap (4.5 dB)
even with a non-robust design. Proposed robust designs allow
an even smaller gap, especially with the negative security gap
achieved with SE model design (2.5 dB with NBE in the center
and −2.3 dB with SE on the right of the figure).
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3) Secrecy Rate: Secrecy rate is a well-studied physical
layer security metric and is defined as the difference between
the achievable rate at the legitimate users and at the eavesdrop-
pers. Following [67], [68], we adopt the following definition
of the secrecy rate for the proposed multi-BS multicast system
in presence of multiple eavesdroppers:

secrecy rate =

KR∑
l=1

(
log
(
1 +

KT∑
t=1

|CtlVt|2

|CtlWt|2 + σ2
tl

)
− max

1≤e≤KE

log
(
1 +

KT∑
t=1

|GteVt|2

|GteWt|2 + σ2
te

))
(28)

In Fig. 6 and 7, we show the secrecy rate performance of the
proposed R-NBE system as a function of the SNR. In Fig. 6,
the performance is observed with different MSE thresholds
(Γ = 0.1, 0.3, 0.5) at the eavesdroppers. As expected, the
achievable secrecy rate increases with the SNR. Moreover, a
positive secrecy rate is achieved, even at very low SNR. This
validates the secure communication of the proposed system.
At last, secrecy rate is increasing with the MSE threshold,
which shows that we can control the secrecy rate outage by
varying this parameter.

The secrecy rate performance of the proposed system with
and without AN is shown in Fig 7. For both the cases,
secrecy rate increases with increasing SNR. The proposed
system design without AN is able to achieve positive secrecy
rate for the whole SNR range and thus demonstrates a good
performance. Adding AN is further deteriorating the signal
at the eavesdroppers and hence achieving improved overall
secrecy performance. Tuning AN variance is thus another
means of controlling secrecy rate outage.
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Fig. 6: Secrecy rate vs varying SNR for the proposed robust
NBE design (R-NBE) for different values of MSE thresholds
at the eavesdroppers (Γ.)

4) Effect of AN: Fig. 8 shows the effect of the AN variance
on the BER of legitimate UEs and eavesdroppers for the R-
NBE design. It is first observed that the BER of the legitimate
UEs is significantly lower than the eavesdroppers BER, hence
guaranteeing a reliable communication. The addition of AN
lowers a bit the performance of legitimate UEs as some power
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Fig. 7: Secrecy rate vs varying SNR for the proposed robust
NBE (R-NBE) design by considering with and without the
presence of AN.
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Fig. 8: BER vs. transmit SNR (dB) at legitimate UEs (leg)
and eavesdroppers (eves) for varying AN variance for robust
NBEs (R-NBE) design (τtl = 0.04, τte = 0.09).

is dedicated to it. On the contrary for eavesdroppers, there is
a significant gap between the system performance with and
without AN. For the specific case of multicast MCC, this
confirms the interest of AN for secure communications shown
in the literature in other contexts. Fig. 9 shows the MSE at
eavesdroppers as a function of the threshold Γ considered
in our optimization problems. It is observed that the system
designed without the consideration of AN is not always able to
satisfy the requirement, whereas all the thresholds are readily
satisfied by the AN-aided system design. Further, with the
increase in the variance of AN, the system is more likely to
achieve higher thresholds and inherently provides enhanced
security against eavesdroppers.

5) Convergence: The convergence of the proposed iterative
algorithms is observed through simulations for the NR, R-SE,
and R-NBE system designs and is shown in Fig. 10. The figure
depicts the SMSE values for the legitimate UEs with respect
to the number of iterations for two different SNR values.
Even though the global convergence cannot be guaranteed,
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Fig. 9: MSE at eavesdropper vs eavesdropper (eve) MSE
threshold Γ for varying AN at SNR = −10 dB for robust
NBEs (R-NBE) design.

Fig. 10: Convergence behavior of the proposed iterative algo-
rithms for NR, R-SE, and R-NBE system designs.

simulations illustrate the fact that SMSE values monotonically
decreases with each iteration and achieves convergence to a
stationary point. It can also be observed that the proposed
iterative algorithms quickly converge in less than ten iterations
for all the designs. Furthermore, as expected, lower SMSE
value is achieved with higher SNR due to the enhanced signal
quality.

B. System Level Simulations

System level simulations allow us to account for co-channel
interference and random locations of the users. We consider
100 BSs, distributed over an area of 10 km2, drawn according
to a Poisson process. The synchronization area is made of
20 BSs (see Fig. 1). The path-loss between BSs and users
is calculated as per Okumura-Hata model using a carrier
frequency of 700 MHz as given in [69] (a typical frequency
for MCC). We assume NT = 16, NR = 8, NE = 4, Ns = 2,
PT = 46 dBm. The system considered is with robust-NBE at
both legitimate UEs and eavesdroppers with τtl = 0.04 and
τte = 0.09 respectively. AN at t-th BS is set to σ2

zt = 0.04.
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(a) BER CDF for legitimate UEs.
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(b) BER CDF for eavesdroppers.

Fig. 11: BER CDF with MBSFN, SC-PTM and dynamic
clustering.

For a simulation, a team leader is uniformly drawn in the
synchronization area and then 9 team members are selected
within a distance of 500 m. Two eavesdroppers are randomly
drawn within the same distance around the team leader. All the
simulations are executed over 106 data streams. Simulations
are performed for 100 groups.

Fig. 11 shows the BER CDF of legitimate UEs (a) and
eavesdroppers (b) for different clustering approaches: MB-
SFN (the whole synchronization area serves the legitimate
UEs), SC-PTM (only cells covering UEs multicast information
without cooperation) and dynamic greedy clustering (Algo-
rithm 1, where K ′T controls the minimum number of BSs
involved in the cluster). As expected MBSFN provides the
best performance, SC-PTM the worst and dynamic clustering
offers a tradeoff2. This is true for both legitimate UEs and
eavesdroppers but the gap between the two is much higher
with MBSFN compared to SC-PTM. MBSFN should thus be
preferred for secure and highly reliable MCC. However, a
drawback of MBSFN is that it consumes radio resources in
every BS of the synchronization area and thus suffers from
low capacity. If an operator wants to increase its network

2SC-PTM provides however the best performance in terms of system
capacity as studied in [10].
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capacity, it should trade-off the security and reliability level
against capacity by adopting a dynamic clustering scheme.
Dynamic clustering with K ′T = 10 BSs, which is half of the
synchronization area represents for example here a good trade-
off.

Fig. 12 depicts the secrecy rate outage probability of the
proposed system for different clustering methods: MBSFN,
SCPTM, and dynamic greedy clustering with cluster sizes
as 5 and 10. It is observed that MBSFN achieves the best
secrecy performance, the SC-PTM demonstrates the worst
whereas the performance of dynamic clustering is in between.
For example, with a target secrecy rate of 10 bits/sec/Hz,
90% of the users observe outage with SC-PTM, while outage
probability is 43% with dynamic clustering with a cluster size
of 5, 38% with a cluster size of 10 and 30% with MBSFN. The
performance thus increases with the number of BSs involved
in the multicast transmission thanks to the combined effect of
AN and beamforming.
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Fig. 12: Secrecy rate CDF for comparing system level perfor-
mance among systems using MBSFN, SC-PTM and dynamic
clustering.

V. CONCLUSION

We propose a secure MIMO transceiver design for multi-BS
multicast MCC that are resilient towards CSI errors following
stochastic and norm-bounded error models. SMSE minimiza-
tion problems are formulated under the constraint of maximum
transmit power at every BS and minimum MSE at every
eavesdropper. The BSs forming the coordinating cluster are
obtained dynamically by using a greedy algorithm. Security
is added in the system by optimal MIMO beamforming and
by introducing an additional AN at the transmitters. The
desired AN filter is jointly designed along with the precoder
and receiver filters by solving the considered optimization
problems using iterative and worst-case approaches. The per-
formance is evaluated in terms of various parameters including
security gap, BER and MSE. The computational analysis
is also conducted and presented for both error model-based
proposed designs. Numerical results reveal the crucial role of
robust designs for MCC, even in presence of norm-bounded

errors. Adding AN degrades only slightly the performance of
legitimate users but significantly improves the security of their
communication. At last, we highlight the fact that increasing
the number of cooperating BSs improves both reliability and
security. However, dynamic clustering can represent a good
trade-off if capacity becomes a requirement.

APPENDIX A
PROOF OF LEMMA 1

The transmit power can be expressed as follows:

Pt , E[||xtx
H
t ||] = E[tr(xtx

H
t )]

= tr(VtV
H
t + Wt). (29)

The MSE εl at the legitimate user l is computed as follows:

εl , E[||d− d̂l||2]

= E
[
||d− (

KT∑
t=1

Rl(Ĉtl + ∆tl)Vtd

+

KT∑
t=1

Rl(Ĉtl + ∆tl)wt + Rlnl)||2
]

= tr(I)− tr(

KT∑
t=1

RlĈtlVt)− tr(

KT∑
t=1

VH
t ĈH

tl R
H
l )

+tr(

KT∑
t=1

RlĈtlVtV
H
t ĈH

tl R
H
l )

+tr(

KT∑
t=1

RlĈtlWtĈ
H
tl R

H
l ) + σ2

nltr(RlR
H
l )

+E
[
tr(

KT∑
t=1

Rl∆tlVtV
H
t ∆H

tl R
H
l )
]

+E
[
tr(
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Rl∆tlWt∆
H
tl R

H
l )
]
. (30)

The last two terms can be simplified by using the trace
property as given in Lemma 1 in [40].
Incorporating the property will yields (15). Similarly, MSE at
e-th eavesdropper is given as:

εe , E
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]
= E
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]

= tr(I)− tr(
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teE
H
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+tr(
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teE
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+E
[
tr(

KT∑
t=1

Ee∆teVtV
H
t ∆H

teE
H
e )
]

+E
[
tr(

KT∑
t=1

Ee∆teWt∆
H
teE

H
e )
]
. (31)

Again, the application of the trace property provides the result
(16).

APPENDIX B
PROOF OF PROPOSITION 1

We use here two binary slack variables χl and χe in order to
consider at once different problems introduced in the paper.
χl = 1 corresponds to a robust solution for legitimate users
and χl = 0 to a non-robust design. χe = 1 corresponds to a
perfect eavesdroppers CSI at the transmitter, otherwise χe = 0.
The generalized MSE equations are now reformulated as:

εl = tr(I)− tr(

KT∑
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RlĈtlVt)− tr(

KT∑
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tl R
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H
t ). (32)

The e-th eavesdroppers MSE is simplified as:

εe = tr(I)− tr(
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WtW
H
t ĜH
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We solve the optimization problem (P1) by forming the
Lagrangian L as below:

L(Vt,Wt,Rl, λe, λ
′

t) =

KR∑
l=1

εl +

KE∑
e=1

λe(Γ− εe)

+

KT∑
t=1

λ
′

ttr(VtV
H
t

+σ2
ztWtW

H
t )− PT (34)

where λe and λ
′

t are the Lagrange multipliers associated with
e-th Eve’s MSE constraint C1 and t-th BS’s power constraint

C2 respectively. The Lagrange multiplier approach is applica-
ble for solving the optimization problems with equality condi-
tions in the constraints. On the other hand, the Karush-Kuhn-
Tucker (KKT) approach allows handling of the inequality
constraints by generalizing the Lagrange multiplier based on
the KKT conditions. In the formulated optimization problem
P1, it can be seen that all the optimization constraints have
inequality bounds. Hence, we utilize the KKT approach to
restructure the constraints and solve the optimization problem.
The KKT conditions for the problem P1 are as follows:

∂L
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(35)

On taking these conditions into account, the desired
transceivers are obtained by minimizing the Lagrangian with
respect to each optimization variable while considering that
the other variables as fixed. Hence, the precoder Vt is derived
by taking the gradient of L with respect to VH

t , and is given
as:
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Equatting to zero leads to:
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. (37)

Receive filter Rl is obtained in the same way, i.e. by differen-
tiating the Lagrangian with respect to RH

l , while considering
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all other variables as fixed, and assigning it to zero:
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Now, we differentiate the Lagrangian with respect to WH
t and

setting it to zero:
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This is equivalent to AtWt = 0 where

At =
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In the condition AtWt = 0, At cannot be zero because
otherwise effective components in the design of the precoder
would be zero and the precoder matrix would be non-singular.
This would invalidate the complete design. As a consequence,
the AN shaping matrix Wt should be taken in the null
space of At and Wt = Bt/

√
tr(BtBH

t ), where Bt =
I−AH

t (AtA
H
t )−1At. At last, differentiating the Lagrangian

with respect to λ
′

t and λe respectively and setting to zero we
get:

∂L

∂λ
′
t

= tr(VtV
H
t + σ2

ztWtW
H
t )− PT = 0 (43)

∂L

∂λe
= Γ− εe = 0. (44)

The values for λe, e = {1, 2, · · · ,KE} and λ
′

t, t =
{1, 2, · · · ,KT } are jointly computed by inserting the values of
Vt and Wt in (43) and (44) so as to satisfy the thresholds Pt

for all t and εe for all e. The Lagrange multipliers are obtained
such that they satisfy the KKT conditions in (35) which result
in positive values for λe and λ

′

t or zeros otherwise.
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