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Abstract—In this paper, we consider a dynamic device-to-
device (D2D) communication model where transmitters and
receivers have multiple antennas and adopt beamforming (BF).
A continuous spatio-temporal model for the wireless network is
analyzed, which combines a spatial stochastic point process and
a dynamic birth-death process. We model BF by using a uniform
linear array (ULA) and extend the result of Sankararaman
and Baccelli on the stability condition of such a network. We
show that the critical arrival rate increases with the number of
antennas at the transmitter and the receiver.

Index Terms—Stochastic geometry, birth-death process, beam-
forming, stability, device-to-device

I. INTRODUCTION

Device-to-device (D2D) communications emerge as a
promising technology to improve the spectral efficiency of
next generation cellular networks. Since it allows direct com-
munication between nearby devices, this technique is the basis
of new proximity based services [1]. In in-band mode, D2D
devices share the same spectrum resource and interfere each
other. As the number of D2D devices increases, it becomes
more and more difficult to meet stringent quality of service
requirements, such as those foreseen for URLLC in 5G.

A solution to improve the networks performance is beam-
forming (BF). Several papers in the literature show the great
potential of BF for D2D communications for reducing inter-
ference and improving network throughput, see e.g. [2] [3].
However, it is still an open issue to study the randomness of
large scale networks with D2D communication, when there are
massive access of random located users using BF with various
communication demands.

Stochastic geometry has recently been widely used to
characterize large scale networks with D2D communications
[4]–[6]. Devices are supposed to form a Poisson point pro-
cess (PPP) and performance parameters such as successful
transmission probability or network capacity are evaluated.
A common limitation of these works is that they focus on
the network spatial randomness at a given instant but neglect
the temporal randomness. In contrast, references [7]–[9] study
the dynamic traffic properties of large scale stochastic cellular
networks. Networks are modeled as classical queue interacting
problems [10], i.e., the number of users and their locations in
the network are assumed to be static all the time. Each user has
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a buffer to accept the data packets which arrive according to a
Poisson process with a random volume. The networks are here
modeled as discrete time Markov chains. A limitation of this
approach is that there is no random arrival or departure of data
sources. Moreover, the full buffer assumption is restrictive as
some devices may become idle if they have no data to transmit.
A more practical and realistic model states that devices visit
the network at random time instants with a random amount of
data to be transmitted. This assumption is reasonable, because
a user who has finished its file transmission may move to
another location at another time instant. Then, it starts a new
communication there. At the same time, a new user may
arrive in the network and start the communication at a random
location. This network can be modeled by a Spatial Birth-
Death Process [11], [12]. To the best of our knowledge, [13]
is the first work to have modeled a D2D network as a spatial
birth-death process. The stability condition of this model is
studied by the authors. This model has been recently extended
to model the uplink of cellular networks in [14].

In this paper, we propose an extension of the work of
[13] to D2D networks with BF. We study its impacts on the
performance and in particular on the critical arrival rate of
D2D users. Our contributions are thus the following:
• We propose a BF model for D2D communications based

on the Uniform Linear Array (ULA) model, which is
tractable from a stochastic geometry point of view.

• We derive a new stability condition for the spatial birth-
death D2D process as a function of the number of
transmit and receive antennas.

• Our numerical results show that BF extends the stability
region of D2D networks and that the critical arrival rate
is increasing with the number of antennas.

The rest of the paper is organized as follow. In Section II,
we introduce the system model for the D2D network with
BF and derive the transmission rate of each user. In Section
III, we present the stability criterion of the spatial birth-death
process with BF. Our numerical results are shown in Section
IV. Section V concludes the paper.

II. SYSTEM MODEL

In this section, we fist describe the stochastic model of [13]
and then extend it to take into account BF. The model of [13]
is referred to the so called ”dipole-model” with a series of
transmitter-receiver pairs arriving in the network as a spatial



Poisson process. Each active transmitter in the space transfers
a file to its corresponding receiver. This process models a
D2D communication network, where several nearby users use
simultaneously the same spectrum resource to communicate.
Once a transmitter-receiver pair finishes its file transmission,
it becomes idle and disappears from the network.

A. Spatial Birth-Death Process

The area in which D2D users live is a two dimensional
Euclidean square plane S = [−Q,Q] × [−Q,Q], S ⊂ R2,
where the side length of the plane is 2Q, Q ∈ R+. The area
of S is denoted as |S|.

The arrival time instants of the transmitter-receiver pairs
are modeled as a stationary Poisson process with arrival rate
λ|S|, where λ ∈ R+ is the arrival rate per unit of surface.
The positions of the receivers in each pair are i.i.d. uniformly
distributed in the plane S. For all the pairs, the length between
the transmitter and their corresponding receivers are set to
be the same constant T in our studies. Then the transmitter
devices are uniformly distributed on the circles centered at the
receivers of radius T .

At each time instant t, the positions of the receivers
in the network are modeled as a spatial point process
ΦRxt = {x1, x2, ..., xNt} defined on (R2,B2), where B2

is the σ−algebra on R2, Nt is the number of pairs and
xi denotes the position of the i-th active receiver. Then
the positions of pairs can be interpreted as a marked point
process Φt = {(x1, y1), (x2, y2)...(xNt

, yNt
)}, where the

marks yi denote the transmitters locations of the i-th pair.
Assume that this process is simple, i.e., there is no multiple
users at the same location. Similarly, we denote the process
ΦTxt = {y1, y2, ..., yNt

} as the point process with respect to
the transmitters locations. Given a Borel set A, let Φt(A)
denote the number of receivers in A at time t. Hence the
number of active pairs in the plane {Φt(S)} is also a counting
process indexed by the time t.

Once the i-th pair arrives at time bi, it becomes active and
has to transfer a file. The file size Li in bits is a random
variable following an exponential law of mean L bits. The
transmission rate of each pair is dynamic following the Shan-
non rate. At the end of the file transmission, the transmitter-
receiver pairs leave the plane. The time at which the i-th
pair leaves the plane is denoted as di. As a consequence, the
sojourn time of pair i is Wi = di − bi.

TABLE I
ANTENNA GAIN OF THE APPROXIMATED BF ULA MODEL

Antenna Antenna gain
Typea Gmax Gmin

Tx 2n ρ
Rx 2n2 n ∗ ρ

a Tx and Rx denote the transmitter and the receiver.

B. Beamforming

We adopt a two dimensional approximated ULA beamform-
ing (ULA BF) model shown in Fig. 1 for the transmitters as
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Fig. 1. Uniform Linear Array beamforming (ULA BF) model (solid line) and
approximated ULA BF model (dotted line).

well as the receivers. The model is made of a main beam
of gain Gmax and a side beam of gain Gmin. We denote
ω the half power beamwidth (HPBW) of the array, which
corresponds in the model to the angular aperture of the main
beam. For each device pair, boreside directions of the antenna
arrays are supposed to be aligned.

The parameters of the approximated ULA BF model are
derived from the classical ULA model [15]. Let GTxmax and
GTxmin represent the antenna gains of the transmitters antennas.
Respectively, we use GRxmax and GRxmin to denote the antenna
gain of the receivers antennas. We denote n the number
of antenna elements at both transmitters and receivers. The
specific relations between Gmax, Gmin and n are given in
Tab. I, where ρ is the transmitter antenna minimum gain. Both
ω and ρ are functions of n, which are shown in (1) and (2).
We denote by K(n) the sum of the power gain in the array
radiation area. The derivation of (1), (2) and (3) are presented
in Appendix A.

ω(n) = 2

(
π

2
− arccos

2.784

nπ

)
≈ 1.7723

n
(1)

ρ(n) =
K(n)− 2nω(n)

π − ω(n)
(2)

K(n) =

∫ π

0

2

n

∣∣∣∣ sin( 1
2nπ cos θ)

sin( 1
2π cos θ)

∣∣∣∣2 dθ (3)

Consider two pairs (xi, yi) and (xj , yj). Let θRxij denote the
minimum angle between the direction −−→xiyj and pair i’s two
boreside directions which are denoted by −−→xiyi and −−→yixi. Re-
spectively the angle θTxij denotes the minimum angle between
the direction −−→yjxi and the pair j’s two boreside directions
which are denoted by −−→yjxj and −−→xjyj . Mathematically, they
can be expressed as follows:{

θRxij = min(∠yjxiyi, π − ∠yjxiyi)

θTxij = min(∠xiyjxj , π − ∠xiyjxj)
(4)



Finally, we can define the total power gain from the transmitter
yj to the receiver xi with BF as Gij .

Gij =


GRxmaxG

Tx
max if θRxij ≤ ω and θTxij ≤ ω

GRxmaxG
Tx
min if θRxij ≤ ω and θTxij > ω

GRxminG
Tx
max if θRxij > ω and θTxij ≤ ω

GRxminG
Tx
min if θRxij > ω and θTxij > ω

(5)

Since the boreside directions of the transmitter and the receiver
of a pair are aligned, we have: Gii = GRxmaxG

Tx
max.

C. Transmission Rate

We first consider the case without BF. Let `(r) denote
the path-loss function at distance r, which is assumed to
be bounded. Let P denote the transmission power of the
transmitter. Without considering the channel small-scale fad-
ing, the power received by the receiver located at x from its
corresponding transmitter located at y, can be expressed as
P`(‖x− y‖). The interference I(x,Φt) is the sum of powers
received by a receiver at x from other pairs in the configuration
Φt:

I(x,Φt) =
∑

u∈φTx\y

P`(‖u− x‖) (6)

The transmission rate R(x,Φt) of the pair (x, y) ∈ Φt varies
as a function of time according to the Shannon rate:

R(x,Φt) = B log2

(
1 + P

`(‖x− y‖)
N0 + I(x,Φt)

)
(7)

where B denotes the bandwidth of the transmission channel
and N0 is the thermal noise at the receiver side.

With the application of BF, the received power from trans-
mitter at yj to receiver at xi is now GijP`(‖xi−yj‖). Hence
we get the expression of the interference for a receiver xi
associated with yi with BF:

IBF (xi,Φt) =
∑

yj∈φTx,i6=j

GijP`(‖yj − xi‖) (8)

We can thus define the Shannon rate of the transmitter-receiver
pair (xi, yi) at configuration Φt as:

RBF (xi,Φt) = B log2

(
1 + P

GRxmaxG
Tx
max`(‖xi − yi‖)

N0 + IBF (xi,Φt)

)
(9)

III. STABILITY CRITERION

In such a spatio-temporal network, all the device pairs
are served without constraints of the number of servers. So
we can regard this system as a M/G/∞ queue, where the
service rate for each user are different and time-varying. The
stability of this queue is a critical issue to study. The system
is stable if Φt(S) is a stationary counting process. Moreover,
Φt can be characterized as a continuous-time Markov chain
(CTMC) with state space the set of configurations. In brief, the
ergodicity, the stationary regime and the stability describe the
same phenomenon for such a process. Reference [13] proposes
a necessary and sufficient condition to make Φt ergodic. We
derive the stability criterion (i.e., the time ergodicity) for this

process when the approximated ULA BF model presented
in Section II-B is adopted at D2D pairs. We use the same
definition of stability as in [14].

Definition 1 (Stability). The spatial birth-death process Φt
is said to be stable, if the number of pairs Φt(S) converges
weakly to a limit.

In another word, Φt is stable if the embedded Markov chain
is time-ergodic [13].

Definition 2 (Critical arrival rate). The critical arrival rate λc
is defined as the threshold of arrival rate such that, the spatial
birth-death process Φt is stable if and only if λ < λc.

Let a =
∫
S
`(‖x‖)dx, the critical arrival rate λc given in

[13] is expressed as:

λc =
B`(T )

ln(2)La
(10)

Based on this result, we redefine the critical arrival rate under
the BF paradigm expressed as follows:

λBFc (n) =
4n3B`(T )

ln(2)LaE[G(n)]
(11)

Let p = ω
π , then E[G] is the expectation of a random variable

which depends on the number of antennas elements n, ρ and
p as follows.

E[G(n)] = 4n3p2 + 4n2ρp(1− p) + nρ2(1− p)2 (12)

Theorem 1. Assuming the approximated ULA BF model with
n antenna elements, if λ > λBFc (n), the spatial birth-death
process Φt admits no stationary regime.

Proof: See Appendix B.

IV. SIMULATION

We simulate the birth-death process Φt in forward time,
based on the system model described in Section II-A. In order
to avoid border effects, the network area is transformed in
a torus. If Φt is stable then it admits a stationary regime Φ0.
We denote β the intensity of this spatial point process Φ0. The
value of β can be estimated by observing the value E[Φ0(S)

‖S‖ ].
We can thus observe the sample path of the intensity function
β(t) = Φt(S)

‖S‖ , which is a time series. If the time average value
of β(t) converges to be a constant, the process Φt is ergodic
and has a unique stationary regime. This is known to be the
first order property of the stationary point process [14].

The form of the path-loss function `(·) should be carefully
chosen to keep the value of a =

∫
x∈S `(‖x‖)dx bounded. In

our simulation we take a bounded path-loss model `(r) =
(1 + r)−4. The network plane S is considered to be a square
centered at the origin. The length of S is 2Q and Q = 10
meters in our simulation. The pair distance T is chosen as 1
meter. The average file size is L = 1 Mbits. Other parameters
are the bandwidth B = 1 MHz, the noise power N = −100
dBm, and the transmission power P = 20 dBm. According to
(10), the critical arrival rate without BF is λc = 0.0919 with
the above setting.
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Fig. 2. β as a function of time when λ = 32λc (a), and when λ = 38λc
(b), where n = 4, λBF

c = 35.35λc.
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Fig. 3. Average of sojourn time W as a function of λ with n = 4. The
classical ULA model and the approximated ULA BF model are compared.
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The simulation starts with a receiver arriving at a random
location in S. Each pair is associated with a file whose size
follows the same exponential distribution. We record all the
time instants when there are new arrivals or departures, and
each pair alive in the network updates its transmission rate at
these time instants according to equation (9). We count the
number of active pairs Φt(S) in the network at these time
instants, and we get β(t) = Φt(S)

|S| .
In Fig. 2, we show a case where the number of antenna

elements is n = 4. According to (11), we get λBFc ≈ 35.35λc.
In Fig. 2 (a), we set λ = 32λc. The blue curve shows the
intensity function β(t), and the red curve is its time average
trajectory expressed as β̄(t) =

∫ t
0
β(t)

t . It illustrates clearly
that Φt admits a stationary regime, since β̄(t) reaches a limit.

When the arrival rate exceeds λBFc (n), like in Fig. 2 (b), where
λ = 38λc, the Markov chain is not time ergodic and β(t)
grows indefinitely. This is due to the fact that the increase
of arrivals causes more interference in the network which
reduces the total network throughput, to such extent that the
load exceeds the network capacity.

Another approach to verify the stability of the process is to
study the sojourn time W . According to the little law, β = Wλ
when this system queue is stable. This means that W should be
bounded to keep β bounded. The average of W taken among
all the pairs in one realisation is shown in Fig. 3. The average
of W goes to be infinity when the arrival rate gets close
to λBFc (n), which verifies our stability condition. The figure
shows that the average sojourn time using the approximated
ULA BF model is a bit smaller than the average sojourn time
given by the classical ULA model (14). The approximation
gives a good approximation of the average sojourn time and
of the critical arrival rate.

The impact of BF is significant in terms of the expansion
of the stability region. In Fig. 4, we show λBFc (n) and λc as
functions of the number of antenna elements n, where λc is
a constant. The value of λBFc (n) increases dramatically when
n increases, since (11) is an increasing function of n.

V. CONCLUSION

In this paper, we present an extension of the wireless
network model proposed by Sankararaman and Baccelli based
on a spatial birth-death process to the scenario where devices
use beamforming. We propose a simple and tractable model for
BF based on a uniform linear array and we provide an explicit
expression of the critical arrival rate as a function of the
number of antenna elements. Theoretical and numerical results
show that BF expands significantly the stability region of such
a network and that the critical arrival rate is an increasing
function of the number of antenna elements.

APPENDIX A

In this section, we express the two parameters ρ, ω as
functions of the number of antenna elements n. The methods is
based on [15]. A uniform linear array has n antenna elements
aligned along the x-axis and are equally spaced with distance
d. Consider a planar wave departing in (or arriving from) the
direction θ with respect to the x-axis. The field pattern at every
antenna element is denoted by fe(θ), the power pattern is
denoted by ge(θ). Take the phase at the first antenna element
as a reference. Considering the antennas at the transmitters
part firstly, the combined far field pattern fa of the array is
obtained as:

fa(θ) =
1√
n
fe(θ)

n∑
i=1

aie
j((i−1)kd cos θ) (13)

where k = 2π/λ and ai is a phase offset applied at antenna
element i. The 1/

√
n factor is to account for the power split

among the n antenna elements at the transmission. Choosing



ai = e−j((i−1)kd cos θ0), the power gain ga(θ) = |fa(θ)|2 leads
to:

ga(θ) =
1

n
ge(θ)

∣∣∣∣∣ sin(nk d2 (cos θ − cos θ0))

sin(k d2 (cos θ − cos θ0))

∣∣∣∣∣
2

(14)

The maximum array factor gain for the transmitter is achieved
for θ = θ0: the maximum array factor is n. If we assume
a rectangular patch antenna, the antenna radiation pattern is
hemispheric and has a directivity of 2 [15]. Hence we now
assume θ0 = π/2 (boreside), ge(θ) = 2. Finally the maximum
gain of the transmitters antenna is ga(θ0) = 2n.

The half power beam width of the array factor is obtained
by solving the equation:

2

n

∣∣∣∣ sin( 1
2nπ cos θ)

sin( 1
2π cos θ)

∣∣∣∣2 =
2n

2
(15)

Using an approximation for the sine function for small ar-
guments by approximating the denominator by ( 1

2nπ cos θ)2,
we have to solve: | sin(x)/x|2 = 1/2. Numerically, we find:
x ≈ 1.392. So that the half power bandwidth (HPBW) ω(n)
of n transmitter antennas is:

ω(n) = 2

(
π

2
− arccos

2.784

nπ

)
≈ 1.7723

n
(16)

Let ρ be the minimum gain in the complementary sector. We
equalize the approximate and exact radiated powers.

2nω(n) + ρ(n)(π − ω(n)) = K(n) (17)

Then the transmitter antennas minimum gain is given by:

ρ(n) =
K(n)− 2nω(n)

π − ω(n)
(18)

where K(n) is the total power gain of antennas half radiation
region from θ = 0 to θ = π shown by (3).

For the receiver antenna, there is no need to divide the power
into n parts. So the received signal is formed as follows:

fRxa (θ) = fe(θ)

n∑
i=1

aie
j((i−1)kd cos θ) (19)

Using the same method as for the transmitter antenna case, we
get that ω has the same value as that we get for transmitters
antennas. The minimum gain of receiver’s antenna has the
value GRxmin = nρ.

APPENDIX B

In this section, we give the derivation of the critical arrival
rate with BF and adapt the proofs given in [13] to our system
model. According to the Miyazawa’s rate conservative law
(RCL) [16], the average rates of increase should be equal to
the rates of decrease for a stationary stochastic process. We can
thus apply RCL to the number of active pairs in the network:

λ|S| = λd. (20)

Next we can apply the RCL to the total workload in the
network. Denote Φ0 as the configuration when the network

is stationary. Given that the data volume of each pair is i.i.d.
exponentially distributed with mean L bits, the RCL leads to
the result that:

λ|S|L = E
[∑

x∈Φ0
RBF (x,Φ0)

]
(21)

= EG
[
E
[∑

x∈Φ0
RBF (x,Φ0)

]
|G
]

(22)

Where G is the power gain of the transmission path, of
which the receiver is located at the origin, and the transmitter
is located at a random place. Let E0

Φ0
describe the spatial

Palm Probability of Φ0. Since Φ0 is in steady state this Palm
probability must exist [17]. According to the definition of Palm
probability, we get:

E

[∑
x∈Φ0

RBF (x,Φ0)

]
= E0

Φ0
[RBF (0, φ0)]E[φ0(S)] (23)

Denote the total interference seen by the receivers in the
network as IBFt =

∑
x∈Φt

IBF (x,Φt), it also respects the
RCL:

λ|S|E↑[I] = λdE↓[D] (24)

where I = I0+− I0 denotes the additional interference arisen
by an arrival. Denote the corresponding palm probability
as E↑. Similarly, D = I0 − I0+ denotes the decrease of
the interference arisen by a departure and E↓ is its palm
probability. Suppose that the system is stationary at Φ0, the
intensity of Φ0 is E[Φ0(S)]

|S| if it exists. According to the PASTA
property [17], the palm probability can be replaced by the
stationary probability when the process is Poisson. Since the
births are Poisson and uniform in S, we can suppose that the
birth occurs at the origin center of the space. By applying
Campbell’s theory this leads that:

E↑[IBF ] =2EG[E[
∑
x∈Φ0

GP`(‖x‖)]|G] (25)

=2P
E[Φ0(S)]

|S|
EG[

∫
S

G`(‖x‖)dx] (26)

Let aBF =
∫
S
G`(‖x‖) being a random variable which is a

function of G. The coefficient 2 in formula (25) comes from
the fact that, once a device pair arrives, the total interference
it receives from other devices has the same amount as it leads
to the network. We get (26) by applying Campbell’s formula.

According to (20) and (21), we get the intensity correspond-
ing to the death epochs as follows:

λd =
E
[∑

x∈Φ0
R(x,Φ0)

]
L

(27)

considering the simple point process on the real line corre-
sponding to the death-instants. Different from the birth pro-
cess, the rate of the death process depends on the configuration
of the network which is dynamic. Since the file-size is a
stochastic variable with mean L, the point process admits a
stochastic-intensity λd(t) = 1

L

∑
x∈Φt

R(x,Φt) with respect
to the filtration Ft = σ(φs : s ≤ t). It then follows the
Papangelou’s theorem [17] that

λdE↓[D] = E[λd(0)D] (28)



The decrease magnitude of total interference also differs from
the uniform hypothesis of the birth case. At time 0, the death
probability of each pair is different. Denote the event X that a
pair leaves S at time 0− as F . At static regime Φ0, the decrease
D has magnitude I(X,Φ0) with a probability P[X ∈ F ]. Since
the file size are i.i.d. and exponentially distributed with mean
L, this probability can be expressed as follows:

P[X ∈ F ] = lim
ε→0

1− exp (−εR(X,Φ0)/L)

1− exp (−
∑
x∈Φ0

εR(x,Φ0)/L)
(29)

=
R(X,Φ0)∑
x∈Φ0

R(x,Φ0)
(30)

Let R0 =
∑
x∈Φ0

R(x,Φ0). We can then get the equation
below by applying (27), (28) and (30).

E↓[D] = 2E

[
λd(0)

E[λd(0)]

∑
x∈Φ0

RBF (x,Φ0)

RBF
0

IBF (x,Φ0)

]
(31)

= 2
E[
∑
x∈Φ0

RBF (x,Φ0)IBF (x,Φ0)]

E[RBF
0 ]

(32)

= 2
E0

Φ0
[RBF (0,Φ0)IBF (0,Φ0)]

E[RBF
0 ]

E[Φ0(S)] (33)

Now combine (20) and (24), we get E↓[D] = E↑[I]. Thus
we get:

2
E[Φ0(S)]

|S|
EG[aBF ]

=2
E0

Φ0
[RBF (0,Φ0)IBF (0,Φ0)]

E[RBF
0 ]

E[Φ0(S)]

(34)

By applying (21) to (34), we obtain:

EG[aBF ] =
E0

Φ0
[RBF (0,Φ0)IBF (0,Φ0)]

Lλ
(35)

Given the definition of the transmission rate in (9), we have:

RBF (0,Φ0)IBF (0,Φ0) ≤ BGRxmaxG
Tx
max`(T )

ln(2)
(36)

Applying this inequality to (35), we get the following inequal-
ity:

λ ≤ BGRxmaxG
Tx
max`(T )

ln(2)LEG[aBF ]
. (37)

Now we define the probability distribution of the transmission
gain G. Based on formula (4), let p denote the probability that
θRxox ≤ ω or θTxox ≤ ω. Because the transmitters are uniformly
located around the receiver, and the boreside of antennas are
aligned, we get p = ω

π . Then we can get the expectation of
G(n) based on the formula (5) and the value of Gmax, Gmin
in Tab. I. The expression of E[G(n)] is given in (12). Thus
aBF has the expectation as below:

EG[aBF ] = E[G(n)]a (38)

According to the relation between the number of antenna
elements and the gain, we conclude that the critical arrival
rate is as follows:

λBFC (n) =
BGRxmaxG

Tx
max`(T )

ln(2)LE[G(n)]a
(39)

=
4n3B`(T )

ln(2)LaE[G(n)]
(40)
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