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Mission Critical Communications

Source : ETELM
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Mission Critical Communications

MCC = All communications related to the safety and the security of the civil
society. Public safety services, like police forces, firemen, rescue and ambulance
services, or employees critical infrastructures, like energy and transportation
suppliers

MCC are conveyed by Professional Mobile Radio (PMR) networks

One of the most important and indispensable services offered by mission-critical
networks is the group communication

MCC unique requirements : coverage, reliability and secure communications

Group communication is based on Multimedia Broadcast/Multicast Service
(MBMS) in 3GPP
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A Dynamic Clustering Algorithm Motivation

Motivation

Multicast/Broadcast Single Frequency Network

User SINRs are maximized

Radio resources can be wasted
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A Dynamic Clustering Algorithm Motivation

Motivation

Single-Cell Point-To-Multipoint

Degraded user SINRs

Maximized network capacity
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A Dynamic Clustering Algorithm Motivation

Motivation

SC-PTM

Degraded users SINRs

Maximized network capacity

MBSFN

Users SINRs are maximized

Radio resources can be wasted

Our objective : design a dynamic clustering algorithm to solve the
reliability-capacity tradeoff in MCC
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A Dynamic Clustering Algorithm Motivation

Clustering for cooperative transmissions

State-of-the-art is mostly on unicast best effort traffic with the goal of maximizing
user data rates under static traffic models

Greedy algorithms based approaches have been widely used in network-centric
clustering algorithms [PGH08, YKL16, DdV14, BBB14, Sch17]

⇒ Not optimal and requires adaptations for group communications

Dynamic user centric clustering [LHYZ16, GZS14, LZG+18, BJIX16, ZWZ+17]

⇒ Focus on PHY data rate, dynamic traffic constraints ignored, only unicast, no
reliability constraint

MBMS literature [REH11, CCE+15]

⇒ Do not address the reliability-capacity tradeoff
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A Dynamic Clustering Algorithm Model

System Model

Downlink of a cellular network

A set V = {1, ..., n} of n cells forming an MBSFN synchronization area

A cluster is a subset S ⊆ V serving a group U of users using multi-point
transmissions

Signal to Interference plus Noise Ratio (SINR) at user u ∈ U :

γu(S) =

∑
b∈S ξubgubPT∑

b∈S(1− ξub)gubPT +
∑

b/∈S PTgub + Nth
, (1)

where ξub denotes the useful portion of the signal received by u from b (see
[RHE08] for the detailed calculation)

For a multicast group U of N users served by cells in S , the average SINR is :

γ̄U (S) =
1
N

∑
u∈U

γu(S). (2)
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A Dynamic Clustering Algorithm Model

Dynamic Traffic Model

Call blocking model : group of users arrive in the synchronization area, use a
resource for a group communication for a certain duration and leave the system.

Poisson arrival (λ), exponential service duration (µ), R resources in every BS.

When a group arrives in the system, it is served by a subset S of BSs with
probability pS and one resource is consumed in every BS in S .

We can approximate the blocking probability in BS b by using Erlang-B :

Π̃(b) ≈ EB(b,R) =

ρRb
R!∑R

r=0
ρr
b
r !

, (3)

where ρb is the load in station b (depends on λ, µ and the probability mass
function pS).
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A Dynamic Clustering Algorithm Problem Formulation

Problem Formulation : Cell Clustering

Cell clustering (inner) problem : find a minimizer set S that solves the following set
function minimization problem, for a given group U :

min
S∈Pv

ΨU (S) , w(S)− γ̄U (S) (4)

S : set of serving BSs

PV : set of all subsets of V

w(S) =
∑

b∈S wb : sum of the weights of BSs b ∈ S

γ̄U (S) : average SINR of group U served by cells in S

⇒ For a fixed w = (w1, · · · ,wn) ∈ Rn, the traffic demand and the clustering policy pS
induces a blocking probability Π̃(b;w) in every b
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A Dynamic Clustering Algorithm Problem Formulation

Problem Formulation : Weights Optimization

Weights optimization (outer) problem : find a minimizer of the quadratic error of the
blocking probability wrt target blocking probabilities :

min
w∈Rn

G(w) ,
n∑

b=1

‖Π̃(b;w)− Π̄(b)‖2 (5)

Π̃(b;w) : blocking probability in a BS b that depend on the weights vector (w)

Π̄(b) : target blocking probability that BS b should attain
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A Dynamic Clustering Algorithm Algorithms
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A Dynamic Clustering Algorithm Algorithms

Group Call Cell Clustering Algorithm (GCCA)

min
S∈Pv

ΨU (S) , w(S)− γ̄U (S)

ΨU is a submodular function.

Submodular functions : A set function F : 2V 7→ R is submodular if and only if, for all
subsets A, B ⊆ V and b ∈ V such that A ⊆ B and b /∈ B, we have :
F (A ∪ b)− F (A) ≥ F (B ∪ b)− F (B).

b

s
1

s
2

Adding b to set A = {s1, s2}

s
2

b

s
1

s
3

s
4

Adding b to set B = {s1, ..., s4}
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A Dynamic Clustering Algorithm Algorithms

Group Call Cell Clustering Algorithm (GCCA)

min
S∈Pv

ΨU (S) , w(S)− γ̄U (S)

ΨU is a submodular function.

Minimizing ΨU is a submodular minimization problem.

This problem is solved using the Minimum-Norm Algorithm [Fuj84, Wol76].

The performance of this solution is compared to a Greedy based approach.
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A Dynamic Clustering Algorithm Algorithms

Cell Weights Optimization Algorithm (CWOA)

min
w∈Rn

G(w) ,
n∑

b=1

‖Π̃(b;w)− Π̄(b)‖2

We rely on direct search methods to minimize G .

These methods provide simpler calculations and relatively low storage requirements
over derivative based methods.

The most popular is the Nelder-Mead simplex method.
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A Dynamic Clustering Algorithm Algorithms

Cell Weights Optimization Algorithm (CWOA)

min
w∈Rn

G(w) ,
n∑

b=1

‖Π̃(b;w)− Π̄(b)‖2

Nelder-Mead algorithm can stagnate, fail to converge or converge to a non-optimal
vertex.

A possible improvement of the original algorithm is to impose restarts of the
algorithm during the optimization run.

An oriented restart of the Nelder-Mead algorithm adapted to our model :

If Π̃(b;w) is too small, weight wb is decreased randomly ;
If Π̃(b;w) > Π̄(b), weight wb is increased randomly.
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A Dynamic Clustering Algorithm Numerical Results

Numerical Results : Group Call Clustering
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Figure – Evolution of ΨU along the iterations of the minimum-norm algorithm

SC-PTM and full MBSFN cooperation schemes are outperformed by the proposed
algorithm in very few iterations.
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A Dynamic Clustering Algorithm Numerical Results

Numerical Results : Cell Weights Optimization
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The reliability-capacity tradeoff is well handled by the proposed scheme.
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A Dynamic Clustering Algorithm Numerical Results

Numerical Results : SINR Improvements
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The proposed scheme lies in-between MBSFN and SC-PTM in terms of SINR.
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A Dynamic Clustering Algorithm Numerical Results

Conclusion

⇒ Our algorithm is able to adapt to traffic variations by maximizing the coverage
under the constraint of a blocking probability.
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Secure Multi-User MIMO Transceiver Motivation

Motivation

The previous study is ignoring security aspects and relies on simple physical layer
models.

⇒ Our goal now : design a multi-BS multi-antenna transceiver for MCC that is robust
to CSI errors (reliability requirement of MCC) and that is secured with respect to
the presence of multiple eavesdroppers (security).

Specifically, we incorporate security in two ways :

MIMO beamforming is used to achieve the desired performance gain at
legitimate users while degrading eavesdroppers channel ;
Artificial Noise (AN) is added at the transmitter to guarantee additional
security over the designed transceivers.

Robustness is considered wrt :

Stochastic errors
Norm-bounded errors
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Secure Multi-User MIMO Transceiver Model

Network Model

Eavesdropper

BS inside the

synchronization area
BS outside the

synchronization area

Legitimate user

Serving BSs

Figure – Blue cells are serving a group of legitimate users (green diamonds) ;
multiple eavesdroppers may overhear the communication (red stars).
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Secure Multi-User MIMO Transceiver Model

Network Model

A greedy clustering is adopted for simplicity :

Algorithm 1 Greedy Clustering

1: Input : Locations of BSs and group users, K ′T ≤ |B| : minimum cluster size
2: Init : S ← ∅
3: for every user do
4: Find the BS t providing the highest receive power
5: S ← S ∪ {t}
6: end for
7: if |S| < K ′T then
8: Find the set S ′ of K ′T − |S| BSs maximizing the sum SINR for group users
9: S ← S ∪ S ′
10: end if
11: return S
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Secure Multi-User MIMO Transceiver Model

Transceiver Model

MC (Telecom Paris) ACTS’20 4 Dec. 2020 29 / 51



Secure Multi-User MIMO Transceiver Model

Transceiver Model

The signal transmitted from t-th BS is given by :

xt = Vtd + Wtzt , (6)

where Vt is a precoder, zt is an zero-mean additional AN vector with variance
E[ztzHt ] = σ2

zt INT and Wt is an AN-shaping matrix.

The estimated data at user l is :

d̂l = RlCtlVtd + RlCtlWtzt + Rlnl . (7)

where Rl is a receive filter.

The MSE at the l-th legitimate UE is :

εl , E[||d− d̂l||2], (8)

In the same way, the MSE at eavesdropper e is :

εe , E[||d− de||2]. (9)
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Secure Multi-User MIMO Transceiver Model

Transceiver Model

CSI errors :

At legitimate users : Gte = Ĝte + ∆te

At eavesdroppers : Ctl = Ĉtl + ∆tl

Assumption (Stochastic error model)

CSI errors ∆te and ∆tl are modeled as Gaussian random variables such that
E[∆te∆

H
te ] = σ2

te I and E[∆tl∆
H
tl ] = σ2

tl I.

Assumption (Norm-bounded error model)

CSI errors ∆te and ∆tl are respectively taken in continuous sets, called uncertainty
regions :

Gte = {∆te : ||∆te ||2 ≤ τte}, (10)

Ctl = {∆tl : ||∆tl ||2 ≤ τtl}, (11)

where τte and τtl denote the radii of the uncertainty regions.
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Secure Multi-User MIMO Transceiver Transceiver Design

Stochastic Errors : Problem Formulation

In presence of stochastic errors :

minimize
Vt ,Wt ,Rl

t=1...KT ,l=1...KR

KR∑
l=1

εl ,

subject to C1 : εe ≥ Γ, ∀e ∈ {1, · · · ,KE},
C2 : Pt ≤ PT , ∀t ∈ {1, · · · ,KT},

(P1)

where Γ is a design parameter that represents a lower bound on the achievable MSE
expected at each eavesdropper.
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Secure Multi-User MIMO Transceiver Transceiver Design

Stochastic Errors : Stationary Point

Proposition

Vt = (At)
−1
( KR∑

l=1

ĈH
tl R

H
l −

KE∑
e=1

λeĜH
teE

H
e

)
(12)

Wt = Bt/
√

[tr(BtBH
t )] (13)

Rl =
( KT∑

t=1

VH
t ĈH

tl

)( KT∑
t=1

ĈtlVtVH
t ĈH

tl +

KT∑
t=1

σ2
zt ĈtlWtWH

t ĈH
tl +

σ2
nl I +

KT∑
t=1

σ2
tltr(VtVH

t )I +

KT∑
t=1

σ2
tlσ

2
zttr(WtWH

t )I
)−1

(14)

Bt = I− AH
t (AtAH

t )−1At ,

At =

KR∑
l=1

ĈH
tl R

H
l Rl Ĉtl +

KR∑
l=1

σ2
tltr(RlRH

l )−
KE∑
e=1

λeĜH
teE

H
e EeĜte −

KE∑
e=1

λeσ
2
tetr(EeEH

e ) + λ
′
t I.
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Secure Multi-User MIMO Transceiver Transceiver Design

Stochastic Errors : Block Descent Algorithm

Algorithm 2 Block Descent Algorithm

1: Input : β, KT , KR , KE , Ĉtl , Ĝte , σnl , σne , Pt ∀ t ∈ {1, · · · ,KT}, l ∈ {1, · · · ,KR},
and e ∈ {1, · · · ,KE}

2: Init : Randomly generate Vt , Wt ∀t ∈ {1, · · · ,KT}, ε′l ← 0, εl ← 0, ∀l ∈ {1, · · · ,KR}
3: repeat
4: ε′l ← εl , ∀l ∈ {1, · · · ,KR}
5: Update Ee ∀e ∈ {1, · · · ,KE} (MMSE filter)
6: Update Rl using Vt , Wt in (14) ∀l ∈ {1, · · · ,KR}
7: Solve for λe and λ

′
t using C1, C2 ∀t ∈ {1, · · · ,KT}, and ∀e ∈ {1, · · · ,KE}

8: Update Vt using λe , λ
′
t , Rl , Ee in (12) ∀t = {1, · · · ,KT}

9: Update Wt using Vt in (13) ∀t = {1, · · · ,KT}
10: Compute εl using Vt , λe , λ

′
t , Wt , and Rl

11: until |εl − ε′l | ≤ β, ∀l ∈ {1, · · · ,KR}
12: return Vt , Wt , ∀t ∈ {1, · · · ,KT}, Rl , εl ∀l ∈ {1, · · · ,KR}
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Secure Multi-User MIMO Transceiver Transceiver Design

Norm-Bounded Errors : Problem Formulation

In presence of norm-bounded errors :

minimize
Vt ,Wt ,Rl

t=1...KT ,l=1...KR

KR∑
l=1

εl ,

subject to C1,C2

C4 : ∆te ∈ Gte , ∀t ∈ {1, · · · ,KT}, ∀e ∈ {1, · · · ,KE}
C5 : ∆tl ∈ Ctl , ∀t ∈ {1, · · · ,KT}, ∀l ∈ {1, · · · ,KR}

(P2)

An equivalent (robust) formulation :

minimize
Vt ,Wt ,Rl

t=1...KT ,l=1...KR

max
∆tl∈Ctl

KR∑
l=1

εl ,

subject to C2,

C6 : min
∆te∈Gte

εe ≥ Γ, ∀e ∈ {1, · · · ,KE}

(P̄2)
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Secure Multi-User MIMO Transceiver Transceiver Design

Norm-Bounded Errors : Problem Decomposition

Sub-problem P̄ ′2 : Assume that the worst-case channel errors ∆te and ∆tl are known
and solve for the transceiver matrices :

minimize
Vt ,Wt ,Rl

t=1...KT ,l=1...KR

KR∑
l=1

εl ,

subject to C1,C2

(P̄ ′2)

Sub-problem P̄ ′′2 : Assume that transceiver matrices and the worst-case error ∆te are
known and solve for the worst-case error ∆tl .

minimize
∆tl

t=1...KT ,l=1...KR

−
KR∑
l=1

εl ,

subject to C5 : ||∆tl ||2 ≤ τtl ∀t ∈ {1, · · · ,KT}, ∀l ∈ {1, · · · ,KR}

(P̄ ′′2 )
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Secure Multi-User MIMO Transceiver Transceiver Design

Norm-Bounded Errors : Problem Decomposition

Sub-problem P̄ ′′′2 : Assume that transceiver matrices and the worst-case error ∆tl are
known and solve for the worst-case error ∆te .

minimize
∆te ,t=1...KT

εe ≥ Γ,

subject to C4 : ||∆te ||2 ≤ τte ∀t ∈ {1, · · · ,KT}
(P̄ ′′′2 )
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Secure Multi-User MIMO Transceiver Transceiver Design

Norm-Bounded Errors : Algorithm

Algorithm 3 Iterative Algorithms for NBE

1: Input : β, KT , KR , KE , Ee , Ĉtl , Ĝte , τtl , τte , Pt , ∀ t ∈ {1, · · · ,KT}, l ∈ {1, · · · ,KR},
and e ∈ {1, · · · ,KE}

2: Init : Randomly generate Vt , Wt , ∀t ∈ {1, · · · ,KT}, ∆tl ∈ Ctl , ∆te ∈ Gte , εl ← 0,
∀t ∈ {1, · · · ,KT}, l ∈ {1, · · · ,KR}, e ∈ {1, · · · ,KE},

3: repeat
4: ε′l ← εl , ∀l ∈ {1, · · · ,KR}
5: Solve P̄ ′2 and update Vt , Wt , Rl using ∆tl , ∆te , Ee and Algorithm 2 ∀t ∈

{1, · · · ,KT}, l ∈ {1, · · · ,KR}, e ∈ {1, · · · ,KE}
6: Solve P̄ ′′2 and update ∆tl using Vt , Wt , Rl ∀t ∈ {1, · · · ,KT}, l ∈ {1, · · · ,KR}
7: Solve P̄ ′′′2 and update ∆te using Vt , Wt , Ee ∀t ∈ {1, · · · ,KT}, e ∈ {1, · · · ,KE}
8: Compute εl using Vt , Wt , and Rl , ∆tl , ∆te

9: until |εl − ε′l | ≤ β, ∀l ∈ {1, · · · ,KR}
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Secure Multi-User MIMO Transceiver Numerical Results

Numerical Results : Physical Layer
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Robust design improves the reliability of MCC.
Due to increased uncertainty, norm-bounded errors leads to poorer performances
compared to stochastic errors.
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Secure Multi-User MIMO Transceiver Numerical Results

Numerical Results : Physical Layer
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System performance decreases with increasing CSI error variance.
The higher the variance, the higher the gap bw robust and non-robust.
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Secure Multi-User MIMO Transceiver Numerical Results

Numerical Results : Physical Layer

Security gap : Sg = SNRL
min − SNRE

max

Below SNRE
max at eavesdroppers, the communication is secure, above SNRL

min at
legitimate UEs, the communication is reliable.

NR : 4dB, R-NBE : 2dB, R-SE : -2dB at BER 10−4 for leg. UEs and 0.3 for eaves

Robust designs achieve reduced security gap (enhanced secrecy performance).
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Secure Multi-User MIMO Transceiver Numerical Results

Physical Level Simulation Results
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Presence of AN degrades the performance at eavesdropper whereas it has a very
low impact on BER of legitimate UE.
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Secure Multi-User MIMO Transceiver Numerical Results

Numerical Results : System Level
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(b)

All the systems, MBSFN, SC-PTM and dynamic clustering demonstrate enhanced
performance for legitimate UEs as compared to eavesdroppers.

At legitimate UEs, MBSFN performs the best, SC-PTM performs worst, whereas
dynamic clustering shows a good trade off.
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Conclusion

⇒ We designed an efficient multi-BS multi-antenna secure MIMO transceiver that
meets the unique requirements of MCC.

Related publications :

Deepa Jagyasi, Marceau Coupechoux, Secure Transceiver Design for Multi-user
MIMO Multicast Mission Critical Communication System, submitted.

Deepa Jiagyasi, Alaa Daher, Marceau Coupechoux, Multicell MIMO Transceiver
Design for Mission-Critical Communication, IEEE Globecom, Dec. 2019.
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Conclusions and Future Works

Mission critical communications for public safety, critical infrastructure, etc is a
relatively unexplored topic.

They deserve specific designs because of a unique set of joint constraints like
security, reliability, coverage, multicast services.

Traditional designs focusing on capacity and user data rate maximization no longer
apply.

Future works includes mm waves studies and new approaches to reduce energy
consumption.

MC (Telecom Paris) ACTS’20 4 Dec. 2020 46 / 51



Conclusions and Future Works

Thank you for your attention !
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