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Introduction

Due to the increase of traffic and data rate requirements, 5G consists of many more
base stations (BS) than previous generation networks: traditional macro cells are
coexisting with many small cells in dense urban areas. With the network densification,
conventional cellular networks are thus becoming heterogeneous. In this context, it is
crucial for operators that want to reduce their operation expenditures to implement
self-organized functions for their network. The goal is to take advantage of the huge
amount of data generated by the network in order to predict potential issues, plan
solutions, take decisions, and optimize in a fully autonomous way. The 3GPP standards
provide architectures and protocols to implement Self-Organized Network (SON)
functions; they, however, do not define SON algorithms. In this article, we thus propose
a reinforcement learning approach to solve the specific case of load balancing in 5G
heterogeneous networks.

Heterogeneous networks consist of macro BSs and small BSs that transmit with high
and low power, respectively. Conventional user-association rule is such that the users
select a BS that provides the highest received power, so that the macro BSs associate
with more users. The resulting imbalance between BSs traffic creates overload situations
at macro BSs, whereas some resources are underutilized in small BSs. Load balancing
therefore aims at a better user association so that network resources are efficiently uti-
lized, and the load is evenly shared among the cells. Two important Intercell Interference
Coordination (ICIC) parameters are key tools for load balancing algorithms, namely the
Cell Range Expansion (CRE) and the Almost Blank Subframes (ABS). The former is a
bias applied to small cell received power and used at user association to offload macro
BSs. The latter is a ratio of subframes left without transmission at the macro BSs to
control the interference on small cells.

Our approach to solve the load balancing problem is based on game theory and rein-
forcement learning, and leverages CRE and ABS. More precisely, our idea is to distribu-
tively minimize an 𝛼–fairness objective function using distributed learning algorithms
in near-potential games with load and outage constraints. First, we model the load bal-
ancing problem as a nonconvex constrained optimization. Then, we adapt log-linear
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learning algorithms (LLLA) to outage and load constraints, and we achieve the global
minimum of the objective function or an approximation of it. By running extensive
simulations, we show that the proposed algorithms converge within few hundreds of
iterations to the global minimum. We also show that outage can be controlled without
ABS, but at the price of undermining the interest of using CRE technique. The introduc-
tion of ABS allows for low outage together with better load balancing.

Self-Organizing Networks

Definitions

SON is a set of functions that allow the cellular network to self-organize in a fully
autonomous way, i.e. without human intervention. It is a central feature to make 5G
networks more efficient in 3GPP Release 16. It is also crucial for mobile network oper-
ators that intend to reduce their operation expenditures. Indeed, due to the increasing
densification of the network, the time and cost of deployment of new network elements
should be reduced. The complexity of the network scales exponentially with the size of
the network, so that traditional and manual techniques to manage and optimize these
networks become impractical. Therefore, SON aims to enhance automation capabilities
of the network and to reduce human dependencies to increase the performance of the
network.

We usually classify SON functions in three groups: self-configuration, self-
optimization, and self-healing (Moysen and Giupponi 2018; Ramiro and Hamied 2011).
Self-configuration is related to the plug-and-play capability of the network elements
and interfaces. The preparation, installation, authentication, and sending status report
are included in this class of SON. Self-optimization aims at improving the performance
of the network in terms of coverage, capacity, handover, or interference. Adaptive
network optimization is a key requirement of SON formulated by Next-Generation
Mobile Networks (NGMN) (Alliance 2006). At last, self-healing includes keeping the
network operational and tracking of events potentially harmful for the network and
automatically acting to avoid any such kind of events.

3GPP has defined in 3GPP (2019) three different types of SON architectures, depend-
ing on the location of the SON function. (i) In the centralized SON (C-SON) solution,
the SON function is located in the management system. It makes use of the information
feedback from the Network Functions (NFs) and runs centralized policies to configure
network parameters. (ii) When SON is distributed SON (D-SON), the SON function
is localized in the NFs. The NFs retrieve data, analyze them, and take decisions. The
management and the control of the D-SON functions is performed in the central man-
agement system. (iii) Hybrid SON (H-SON) is a combination of centralized and D-SON.
The SON function is partially located in the management system and in the NFs and all
work in a coordinated way. H-SON results from the trade-off of available centralized
information and desired network performance.

SON benefits from the Services-Based Architecture introduced in 5G (3GPP 2018a),
where NFs enable other authorized NFs to access their services. In particular, the Net-
work Data Analytics Function (NWDAF) may retrieve data from management and NF
and provide data analytics to SON functions (3GPP 2018b).
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SON Functions in 3GPP

Several SON functions have been introduced by 3GPP in its different releases (Jorguseski
et al. 2014):

1) Self-configuration: standard parameters of new base station can be set using 3GPP
automatic radio configuration data-handling function (ARCF), which may include
preconfigured parameters such as cell identity, base station neighbors, antenna con-
figuration, and transmit power level.

2) Automated Neighbor Relation (ANR): the ANR function manages the cell neighbor
relations. It retrieves the neighbor information from the User Equipments (UEs) and
builds the neighbor set of the BS.

3) Automatic cell identity management: this feature makes use of the reporting of the
UEs to manage the physical cell identity of the cell to avoid any confusion and colli-
sion.

4) Random access optimization: Random access parameters are subject to optimization.
The BS can assist the access by acquiring the access attempt report from the UEs.

5) Mobility robust management: this feature manages the mobility connection of the
UEs. It minimizes the connection failure rate due to mobility and also avoids unnec-
essary handovers.

6) Mobility load balancing: this feature manages the uneven load distribution across the
BSs by offloading traffic to neighboring BSs.

7) Energy saving: this feature is important for cost saving by reducing unnecessary usage
of the equipment.

8) Minimization of drive tests: acquiring radio environment information of the BS is
costly and time-consuming. With this function, the reports from UEs can be used to
better assess the radio environment, especially in indoor.

Load Balancing in the Literature

Load balancing has been extensively studied in the literature using various approaches.
An overview can be found in Andrews et al. (2014), Tonguz and Yanmaz (2008).
These can be broadly classified as centralized, e.g. in Son et al. (2009), Rengarajan and
De Veciana (2011), Stevens-Navarro et al. (2008), Elayoubi et al. (2010), and decentral-
ized optimization approaches, see, e.g. Kim et al. (2012), Xu et al. (2010), Niyato and
Hossain (2009), Aryafar et al. (2013), Kudo and Ohtsuki (2013). However, centralized
solutions are computationally extensive, require huge information exchange overhead,
and are thus not scalable. To overcome these limitations, decentralized approaches
have been proposed. There are several decentralized proposals that are user centric, i.e.
such that the users decide to which BS they associate, see, e.g. Kim et al. (2012), Kudo
and Ohtsuki (2013). However, 3GPP cellular networks are network centric, in the sense
that this is the network that controls the load balancing.

In a network-centric approach, BSs take decisions and users follow a predefined asso-
ciation rule called CRE. With CRE, users associate with a BS that provides the maximum
biased received power. A CRE bias is broadcast by every BS and is typically higher for
small BSs than for macro BSs. This results in an increase of the small cell coverage and
thereby of the number of users associated to them. CRE technique has the drawback of
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increasing outage probability at the cell edge (Damnjanovic et al. 2011); it is, therefore,
often deployed in conjunction with ABS at the macro BS (Oh and Han 2012). During
these subframes that represent a fixed ratio of the radio frame, macro BSs drastically
lower their transmit power, so that small BSs cell edge users can experience less inter-
ference, when scheduled during these periods.

The challenge we intend to tackle here is to jointly determine in a distributed way
the optimal CRE bias values and ABS ratios for a required optimal performance of the
network. Several papers try to achieve a similar goal. Early papers Wang et al. (2011),
Kikuchi and Otsuka (2012), Al-Rawi (2012) propose heuristics without any goal of
achieving some kind of optimality. In Ye et al. (2013), the authors formulate an integer
programming problem but ignore ABS and related trade-offs. In Tall et al. (2014), two
independent algorithms are presented for optimal CRE bias and ABS ratio, respectively.
Optimal parameters are obtained for a given number of active users, and the outage
constraint is ignored. In Liu et al. (2015), Liu et al. model the system as a potential game
and use best response algorithm to reach a Nash Equilibrium (NE) that is also a local
optimizer of a proportional fairness objective function. A static full buffer traffic model
is assumed, whereas a dynamic model is more realistic.

System Model

Network Model

We consider the downlink of a cellular network consisting of a set e of macro BSs
with transmit power Pmacro and a set s of small BSs with transmit power Psmall in a
two-dimensional region . The set of all stations is denoted  ≜ e ∪ s. There are spe-
cial subframes called ABS, during which a macro BS transmits with reduced power PABS.
The proportion of ABS subframes is denoted 𝜃i ∈ [0; 1] for BS i. Let 𝜽 = [𝜃1, 𝜃2,… , 𝜃||]
be the ABS ratio vector. We assume that small BSs do not implement ABS technique, i.e.
𝜃i = 0 for i ∈ s. Every small BS i maintains a parameter ci ∈ [1; cmax] called CRE bias.
The CRE bias vector is denoted c = [c1, c2,… , c||]. The CRE biases for macro BSs are
fixed to unity, i.e. ck = 1,∀k ∈ e.

Channel Model
The received power at location x from BS i is Pigi(x), where Pi is the transmit power and
gi(x) is the channel gain, which captures the effect of path loss and shadowing.

Formally, the channel gain model considered is Goldsmith (2005)

gi(x) = min{1,K |x − xi|−𝜂e𝛽yi(x)} (1)

where K =
(

𝜆w

4𝜋d0

)2
, 𝜆w is the wavelength, d0 is the reference distance, xi is the location

of the BS i, 𝜂 ≥ 2 is the path-loss exponent, and e𝛽yi(x) is the shadowing component,
where 𝛽 = log 10

10
and yi(x) is a realization of Gaussian random process of zero mean and

covariance function Cyi
(Δx) (Gudmundson 1991):

Cyi
(Δx) = 𝜎2

she−
Δx
Dc (2)
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where 𝜎2
sh is the variance, Δx is the displacement, and Dc is the decorrelation dis-

tance (Goldsmith 2005). A constant cross-correlation between the yi(x) and yj(x) is
considered as in Fraile et al. (2008).

Let M be the number of subframes in a given radio frame. For every allowed value of
𝜃, we assume that there is a fixed ABS pattern Υ(𝜃), i.e. a set of subframes during which
a BS transmits at lower power. Notice that Υ(0) = ∅. Then, the SINR 𝛾

f
i (x,𝜽) of a user at

location x in a subframe f is given as

𝛾
f
i (x,𝜽) =

Pf
i (𝜃i)gi(x)∑

j∈
Pf

j (𝜃j)gj(x) + N0

(3)

where

Pf
i (𝜃i) =

⎧⎪⎨⎪⎩
PABS if f ∈ Υ(𝜃i), i ∈ e

Pmacro if f ∉ Υ(𝜃i), i ∈ e

Psmall otherwise
(4)

and N0 = −174 + 10 log W is the thermal noise power in dBm, and W is system band-
width in Hz.

CRE User-Association Rule
According to the CRE rule, a user located at x is associated to the BS i that provides the
highest biased received power. The set of locations i(c) associated to BS i is defined as

i(c) = {x|∀j ∈  ,Pigi(x)ci ≥ Pjgj(x)cj} (5)

where Pi = Pmacro if i ∈ e, and Psmall otherwise.

Physical Data Rate
The physical data rate received by a user at x in a subframe f when it is served
by BS i is denoted 𝜈̃

f
i (x,𝜽). The user average data rate over a radio frame is

𝜈i(x,𝜽) =
1
M

∑M
f =1 𝜈̃

f
i (x,𝜽). This should be understood as the throughput achievable by

the user alone in its cell. The function 𝜈̃
f
i (x,𝜽) is a nonnegative and nondecreasing

function of the SINR 𝛾
f
i (x,𝜽). For SINR below minimum threshold 𝛾min, the user is not

served, and 𝜈̃
f
i (x,𝜽) = 0.

Traffic Model
Users are assumed to arrive in the system according to a spatial random process, down-
load a file of random size, and leave the system when the download is over. This is
referred to as elastic traffic. All users are scheduled in all subframes. At location x, the
arrival rate is denoted 𝜆(x) [arrivals s ̂ ?1 m?2] and the average file size is 1∕𝜇(x) [bits].
Following Kim et al. (2012), we model every BS i as an M/G/1/PS queue of load:

𝜌i(c,𝜽) = ∫i(c)

𝜆(x)
𝜇(x)𝜈i(x,𝜽)

1{max
f

𝛾
f
i (x,𝜽)≥𝛾min}

dx (6)

BS i is stable if and only if 0 ≤ 𝜌i < 1. In this work, only stable network configurations
are considered.
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Outage Probability is defined as the fraction of users that are not served. Recall that
a user is not served if its SINR is below minimum threshold 𝛾min. Formally, the outage
probability Oi observed by BS i is given by

Oi(c,𝜽) =
∫i(c)

𝜆(x)1{max
f

𝛾
f
i (x,𝜽)<𝛾min}

dx

∫i(c)
𝜆(x)dx

(7)

In this definition, as soon as there is at least one subframe during which the SINR is
above the threshold, the user is supposed to be served.

Problem Formulation and Objective Function

Following Kim et al. (2012), we intend to minimize an 𝛼−fairness function 𝜙𝛼(c,𝜽) over
a feasible set  , which are defined as

𝜙𝛼(c,𝜽) =

{∑
i∈

(1−𝜌i(c,𝜽))1−𝛼

𝛼−1
, 𝛼 ≥ 0, 𝛼 ≠ 1

−
∑

i∈ log(1 − 𝜌i(c,𝜽)), 𝛼 = 1
(8)

 = {{c,𝜽}|∀i ∈  , 𝜌i(c,𝜽) < 1,Oi(c,𝜽) < Oi, } (9)

where Oi is the maximum outage probability for BS i. The function 𝜙𝛼(c,𝜽) is in general
nonconvex, and even if it is convex, the set  is nonconvex because c takes discrete
values. The function 𝜙𝛼(c,𝜽) captures various aspects of fairness and performance for
the network, depending on the choice of 𝛼.
(𝛼 = 0) Min-sum-load policy: Minimizing 𝜙0(c,𝜽) minimizes the sum of BS loads in

general. In the particular case, where 𝜽 = 0, it results in a rate-optimal policy. (𝛼 = 1)
Proportional fair policy: Minimizing 𝜙1(c,𝜽) is equivalent to achieving proportional
fairness between BSs (Mo and Walrand 2000). (𝛼 = 2) Delay-optimal policy: It can
be shown that minimizing 𝜙2(c,𝜽) is equivalent to minimizing the average delay of the
network. (𝛼 → ∞) Minmax policy: As 𝛼 → ∞, the minimizer of 𝜙𝛼(c,𝜽) tends to the
min–max load vector (Mo and Walrand 2000; Bonald and Massoulié 2001; Kim et al.
2012).

In Figure 1, we show an example of set obtained with two BSs having different trans-
mit powers located on a two-dimensional region. It is clear from the figure that even if
the CRE set were continuous,  would not be convex. We also show the optimal loads
obtained for different 𝛼 values. All the optimal load points are located on the Pareto
frontier. The point for 𝛼 ≥ 200 in Figure 1 is the min–max load point because a point of
equal coordinates on the Pareto frontier is the min–max point.

Near-Potential Game Framework

In this section, we present an approach using near-potential game framework
for distributed optimization of the objective function.1 We do not intend to
describe and analyze the selfish nature of BSs that aim to minimize their costs.
Rather, our goal is to achieve the global objective of load balancing by prescrib-
ing a cost function to the BSs. For this context, potential games provide a good
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Figure 1 Feasible set  for two BSs.

framework because players of such a game distributively optimize a potential
function.

We model the problem as a user-association game, where the BSs are players and
allowed CRE bias, and ABS ratio values are their strategies. BSs play the user-association
game with the objective of minimizing their costs. An 𝜖-NE of the game is reached when
no player can benefit more than 𝜖 by changing its strategy unilaterally.

Definition 1 [𝜖-Nash equilibrium] Let  = { , {Xi}i∈ , {Ui}i∈} be a game, where 
is the set of players, {Xi}i∈ are the strategy sets, and {Ui}i∈ are the cost functions. Let
ai be a strategy profile of player i and a−i be a strategy profile of all players except for
player i. A strategy profile (a∗

i , a
∗
−i) is an 𝜖-NE if

Ui(a∗
i , a

∗
−i) − Ui(ai, a∗

−i) ≤ 𝜖, ∀ai ∈ Xi,∀i ∈  (10)

If 𝜖 = 0, then it is a pure Nash equilibrium (PNE).

Based on the notion developed in Candogan et al. (2011), we now define the
𝜉-potential game.

Definition 2 [𝜉-potential game] A game  = { , {Xi}i∈ , {Ui}i∈} is an 𝜉-potential
game if there is a potential function h ∶ X →  such that∀i ∈  ,∀ai, a

′

i ∈ Xi, and∀a−i ∈
X−i, |Ui(ai, a−i) − Ui(ai

′, a−i) + h(ai
′, a−i) − h(ai, a−i)| ≤ 𝜉 (11)

For 𝜉 = 0, it is an exact potential game (Monderer and Shapley 1996).

An exact potential game has at least one PNE, and the local optimizers of the potential
function are PNEs (Monderer and Shapley 1996). In the following lemma, we provide
the relationship between the PNEs of a potential game and a near-potential game with
the same potential.
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Lemma 1 Let  = { , {Xi}i∈ , {Ui}i∈} and ′ = { , {Xi}i∈ , {U ′

i}i∈} be an exact
potential game and an 𝜖-potential game, respectively, sharing a common potential
function. If a∗ is a PNE for , then it is an 𝜉-NE for ′ .

In our problem, we seek that the objective function (8) is turned is turned into a poten-
tial function of the user-association game. The issue is in designing the cost functions
of the BSs to obtain an 𝜉-potential game, where 𝜉 represents a trade-off between the
quality of the solution and the distributed nature of the algorithm. We consider a simple
cost structure for BS i, which takes into account only the effects of its neighbors. The
cost functions of the individual BSs are defined as

U𝜛

i (ai, a−i) =
∑

j∈N𝜛

i

(1 − 𝜌j(ai, a−i))1−𝛼

𝛼 − 1
(12)

where N𝜛

i is the neighborhood of BS i, 𝜛 is a parameter to control its size, and 𝜌j(ai, a−i)
is the load of BS j given in (6). With this cost function, we now formally define the
user-association game.

Definition 3 [User-Association Game] It is defined by the tuple Γ𝜛 = { , {Xi}i∈ ,
{U𝜛

i }i∈}, where  is a set of BSs, Xi is a set of strategies of BS i, and U𝜛

i is given in
(12). Strategy set Xi is a discrete set of CRE bias values for small BS i ∈ s, and Xi is a
discrete set of ABS ratios for macro BS i ∈ e.

In the following sections, we first show the construction of N𝜛

i , and then in Proposi-
tion 1 we prove that the user-association game Γ𝜛 is an 𝜉-potential game.

Base Station Neighborhood

We start with the definition of the neighbor set Nx of small BSs at location x:

Nx = {j ∈ |max
cj

Pjgj(x)cj ≥ max
k∈ min

ck

Pkgk(x)ck} (13)

BS j is in Nx if it is likely to serve the user at x for some CRE vector. Take the example
of Figure 2, which shows the bias received power range at a given location x for all BSs.
The BSs whose biased received power ranges intersect with the line that passes through
the max–min-biased received power are the neighbor BSs. In Figure 2, BS 1 is a macro
BS and has a single possible CRE bias. It also has the max–min bias received power. This
means a user at x will receive at least this bias power. The bias received power from BS 5
can exceed this max–min, so that BS 5 is likely to serve the user for some CRE bias and is
thus included in Nx. In the same way, BS 7 is also included in Nx. On the other hand, the
bias received power from BS 2 will never exceed that of BS 1, and thus BS 2 will never
serve the user at x.

We now construct the neighborhood of small BSs based on sets Nx. We assume that
the users located at x calculate Nx and report it to their serving BSs, which multicast
this information to all the BSs in Nx. BS j is considered to be a neighbor of BS i if the pro-
portion of reports where BS i and BS j are in Nx is at least a threshold 𝜛. This constraint
aims at excluding from the neighborhood BSs that have insignificant influence on load.
Otherwise, due to the infinite support of shadowing in our model, all BSs in the network
can be potentially neighbors. Formally, the neighbor set of small BS i is defined as
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Figure 2 Illustration of the neighbor set.

N𝜛

i =

{
j ∈ |∫x∈𝜆(x)1i,j∈Nx

dx

∫x∈𝜆(x)1i∈Nx
dx

≥ 𝜛

}
(14)

For the threshold 𝜛 = 0, the neighbor set N0
i boils down to N0

i =
⋃

x∶i∈Nx
Nx. The

neighbor set N𝜛

i is empty for 𝜛 > 1. For 0 < 𝜛 ≤ 1, N𝜛

i is a decreasing sequence
of sets.

Note that a change in the ABS ratio theoretically affects the load of all BSs of the net-
work through interference. We thus assume that a macro BS neighborhood is made of all
BSs. In practice, however, the neighborhood of a macro BS is finite because interference
power decreases with distance. Macro BS neighborhood can be constructed similarly to
the small BS neighborhood.

Proposition 1 The user-association game Γ𝜛 with the potential function (8) is an
𝜉-potential game, where

𝜉 = max
ai,a

′
i ∈Xi,a−i∈X−i,i∈

| ∑
j∈N0

i ∖N𝜛

i

(1−𝜌j(ai,a−i))1−𝛼

𝛼−1

−
∑

j∈N0
i ∖N𝜛

i

(1−𝜌j(a
′
i ,a−i))1−𝛼

𝛼−1
| (15)

Corollary 1 The game Γ0 is an exact potential game.

Distributed Learning Algorithms

In this section, we introduce distributed learning algorithms that are used to find the
optimal PNE of the user-association game. First, we present the BR algorithm and the
LLLA for the complete information setting. Next, the Binary Log-Linear Learning Algo-
rithm (BLLLA) for the partial information setting is described.
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Best Response Algorithm

Best response algorithm is an asynchronous algorithm where at any given time only a
single BS updates its strategy. Set 𝜛 and assume a time-varying random process with
which a BS is chosen to revise its strategy. The selected BS computes its cost Ui(ai, a−i(t −
1)) for all ai ∈ Xi and sets Ui(ai, a−i(t − 1)) = ∞ if 𝜌j ≥ 1 or Oj ≥ Oj for j ∈ N𝜛

i . Then,
the BS chooses a strategy ai ∈ Xi that minimizes its cost, given the strategies a−i ∈ X−i
of other players. In other words, BS i chooses a strategy from its best response set Bi:

Bi(a−i) = argminai
Ui(ai, a−i) (16)

Note that the BR algorithm requires complete information, i.e. the effects of choosing
all the other strategies are supposed to be known. Moreover, BR algorithm is not guar-
anteed to converge to the optimal PNE even in exact potential game Γ0 because the
potential function may have multiple suboptima (Monderer and Shapley 1996). For the
𝜉-potential game Γ𝜛 (𝜛 ≠ 0) and 𝜉 ≠ 0, a PNE may not even exist.

Log-Linear Learning Algorithm

The LLLA is a classical asynchronous algorithm that guarantees the convergence to the
optimal PNE of an exact potential game (Marden and Shamma 2012). This algorithm
is similar to BR but allows deviations from the best response with a small probability.
It is summarized in Algorithm 1. However, for this algorithm, the BSs require again
complete information, and with this select a strategy to play according to a probability
distribution.

Algorithm 1 Log-Linear Learning Algorithm

1: Initialization: Start with arbitrary action profile a.
2: Set parameter 𝜏 and 𝜛.
3: While t ≥ 1 do
4: Randomly select a player i.
5: Compute cost Ui

(
ai, a−i(t − 1)

)
for all ai ∈ Xi.

6: For any ai ∈ Xi, set Ui
(
ai, a−i(t − 1)

)
= ∞ if 𝜌j ≥ 1 or Oj ≥ Oj for j ∈ i𝜛 .

7: Take action ai(t) from Xi with probability pai
i (t),

pai
i (t) =

exp
(
− 1

𝜏
Ui

(
ai, a−i(t − 1)

))
∑

a′
i∈Xi

exp
(
− 1

𝜏
Ui

(
a′

i , a−i(t − 1)
)) (17)

8: All the other players must repeat their previous actions, i.e. a−i(t) = a−i(t − 1).

Binary Log-Linear Learning Algorithm

The BLLLA converges to the optimal PNE of an exact potential game even if only par-
tial information about the game is available to the players (Marden and Shamma 2012).
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Partial information is the information that a player has about its current strategy. Unlike
complete information, the effect of choosing any other strategy is not known to the
player. As LLLA, the BLLLA is also an asynchronous algorithm. In this algorithm, when-
ever the BS updates its strategy, it does it in two steps. In the first step, the BS tries a
strategy from its strategy set to obtain its payoff. In the second step, the BS randomly
chooses among the two strategies (present strategy and trial strategy), as summarized
in Algorithm 2.

Algorithm 2 Binary Log-linear Learning Algorithm

1: Initialization: Start with arbitrary action profile a.
2: Set parameter 𝜏 and 𝜛.
3: While t ≥ 1 do
4: Randomly select a BS i.
5: Select a trial action âi ∈ Xi with uniform probability.
6: Compute cost Ui

(
âi, a−i(t − 1)

)
.

7: Set Ui
(
âi, a−i(t − 1)

)
= ∞ if 𝜌j ≥ 1 or Oj ≥ Oj for j ∈ i𝜛 .

8: Play action ai(t) ∈
{

ai(t − 1), âi
}

as given below.

ai(t) =
⎧⎪⎨⎪⎩

ai(t − 1), w.p. e−
1
𝜏

Ui (a(t−1))

e−
1
𝜏

Ui (a(t−1))+e−
1
𝜏

Ui(âi , a−i (t−1))

âi, w.p. e−
1
𝜏

Ui(âi , a−i (t−1))

e−
1
𝜏

Ui (a(t−1))+e−
1
𝜏

Ui(âi , a−i (t−1))

(18)

9: All the other players must repeat their previous actions, i.e. a−i(t) = a−i(t − 1).

Note that in all the above algorithms the actions that are not in the feasible set  have
infinite cost.

Convergence of LLLA and BLLLA to Optimal PNE

The proof of convergence of LLLA and BLLLA to optimal PNE for an exact potential
game Γ0 is given in Marden and Shamma (2012). The conditions of convergence of
LLLA and BLLLA to the global minimum of the potential function of a near-potential
game Γ𝜛 , 𝜛 > 0, are given in the following theorem. As the underlying Markov chain is
ergodic, each state has a positive probability to be chosen throughout the iterations of
the algorithm. We say that the algorithm converges to a state if that probability is nonzero
when parameter 𝜏 goes to zero.

Let 𝜙∗
𝛼 and 𝜙

†
𝛼 be the first minimum and second minimum values of the potential.

Theorem 1 For any 𝜖 > 0 and any 𝜉-potential game Γ𝜛 with 𝜉 given in (15) and 𝜉 <
𝜖

2(|X|−1)
, LLLA and BLLLA converge to a set of 𝜉-NEs with potential less than 𝜙∗

𝛼 + 𝜖.

Corollary 2 For the game Γ𝜛 , if 𝜉 <
𝜙†
𝛼
−𝜙∗

𝛼

2(|X|−1)
, then both the LLLA and BLLLA converge

to a set of PNEs whose potential value is 𝜙∗
𝛼 .



12 Reinforcement Learning Algorithm for Load Balancing in Self-Organizing Networks

We now define the neighborhood of every BS so that the condition of Corollary 2
is met. The following theorem gives an upper bound on 𝜛 that guarantees LLLA and
BLLLA to converge to an optimal PNE.

Theorem 2 The constraint in Theorem 2 is satisfied if

𝜛 ≤ 𝜖Q(1 − 𝜌max)𝛼 (19)

where 𝜌max is the maximum possible load of a BS, Q =
max

x,𝜃,j∈
1

𝜈j (x,𝜃)

4|||X|𝜆m max
x

{
1

𝜇(x)

} , and 𝜆m is an

upper bound for the sum arrival rate in a cell.

Corollary 3 The constraint in corollary 2 is satisfied if

𝜛 ≤ Q(𝜙†
𝛼 − 𝜙∗

𝛼)(1 − 𝜌max)𝛼 (20)

Simulation Results

In this section, we show simulation results considering standard parameters as adopted
in 3GPP (3GPP 2010). These parameters are listed in Table 1. We consider eight BSs
located in a two-dimensional region . BS 1 is a macro BS and the rest are small BSs.
There are two hotspots where the traffic is five times the average traffic, which can be
seen in Figure 3. We consider shadow fading with a standard deviation of 𝜎sh = 8 dB
and a decorrelation distance of Dc = 20 m. Cross-correlation between the shadowing
components at a location is considered to be 0.5. We use the classical Shannon formula
for calculating channel capacity 𝜈̃

f
i (x,𝜽) = W log2(1 + 𝛾

f
i (x,𝜽)).

Table 1 Simulation parameters.

Parameter Variable Value

Number of BSs Ns 8
Macro BS during NS Pmacro 46 dBm
Macro BS during ABS PABS 0 dBm
Small BS Psmall 24 dBm
Average file size 1

𝜇
0.5 Mbytes

Average traffic load density 𝜆

𝜇
64 bits s1 m2

System bandwidth W 20 MHz
Carrier frequency fc 2.6 GHz
Noise power N −174+ 10 log (W) dBm
Minimum SINR 𝛾min −10 dB
Path-loss exponent 𝜂 3.5
Reference distance d0 10 m
CRE bias set ci {1, 1.1, 1.2,… , 16}
ABS ratio 𝜃i {0, 0.01, 0.02,… , 1}
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Figure 3 Normalized traffic variations.

Performance Comparison of Algorithms

We first focus on the CRE optimization and assume in this section that the macro
BS does not implement ABS (𝜃1 = 0). We consider a square region  of side
1000 m (Figure 4).

The convergence of LLLA and BLLLA to the global minimum of the objective function
is shown in Figure 5. We observe that in all cases proposed algorithms converge within
few tens and sometimes few hundreds of iterations. Due to the complete information
available with LLLA, this algorithms converges faster than BLLLA. Note, however, that
BLLLA does not lose so much in terms of convergence speed; this is an interesting con-
clusion for a practical implementation.

We also compare in Figure 6 LLLA and BLLLA with Pradelski and Young learning
algorithm (PYLA), which is completely uncoupled and a variant of trial-and-error algo-
rithm (Pradelski and Young 2012). It guarantees asymptotic convergence to the opti-
mal NE for any finite game that possesses at least one NE. LLLA and BLLLA converge
quickly, whereas PYLA oscillates between fast search and slow search phases. There-
fore, the performance of LLLA and BLLLA for load balancing is much superior to that
of PYLA.

Effect of 𝝕
The effect of threshold 𝜛 on the convergence of LLLA is shown in Figure 7a. For
𝜛 = 0, all the BSs are neighbors so that our framework is an exact potential game
and LLLA converges to an optimal PNE. The threshold parameter 𝜛 = 10−22 results
in an 𝜖-potential game and satisfies the sufficient condition of Corollary 3. Therefore,
LLLA also converges to the global minimizer of the objective function. If we now
further increase 𝜛 to a value that violates the condition of Corollary 3 (𝜛 = 0.9),
neighborhoods are further reduced. LLLA is, however, not anymore guaranteed to
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Figure 4 The variations of the coverage regions of BSs obtained using the optimal CRE for different 𝛼.
(a) (𝛼 = 0) Rate-optimal policy. (b) (𝛼 = 2) Delay-optimal policy. (c) (𝛼 = 50) Min–max policy.

converge to an optimal PNE as seen from the figure. The threshold 𝜛 therefore strikes
a balance between the size of the neighborhood and the optimality of the solution.

Effect of 𝝉
As shown in Figure 7b and Figure 7c, there is a trade-off in the choice of 𝜏 . LLLA and
BLLLA converge with high probability to the global minimum of the objective function
for 𝜏 ∈ (0,∞) under the conditions of Corollary 2. This means that, asymptotically, the
probability that the algorithm is at the global minimum approaches to 1 as 𝜏 goes to 0.

For high values of 𝜏 (e.g. 𝜏 = 0.05 in the figure), LLLA and BLLLA result into oscil-
lations. This is due to the fact that the algorithms converge fastly in probability to the
uniform distribution. As a matter of fact, it does not spend much time in optimal states,
which is not practically desirable. For small values of 𝜏 (e.g. 𝜏 = 0.01 or 0.001), asymp-
totically, the algorithms will spend most of the time in the global optimal. However,
convergence is slow in probability. This explains that the system can take long time to
escape from suboptimal states. Contrary to best response, however, the proposed algo-
rithms will not get stuck into these suboptimal states.
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Figure 5 Convergence of LLLA and BLLLA (𝜏 = 0.001, 𝜛 = 10−22). (a) (𝛼 = 0) Rate-optimal policy. (b)
(𝛼 = 2) Delay-optimal policy. (c) (𝛼 = 50) Min–max policy.

Effect of 𝜶
We now compare in Table 2 the optimal bias values and BS loads. The corresponding
coverage regions are shown in Figure 4. With 𝛼 = 0, every user is served by the BS that
provides the maximum data rate, which is obtained for bias values equal to one. This
corresponds to the classical best signal association rule that results in heavy load imbal-
ance between stations: the load of the macro BS reaches 92%, while small BSs have loads
less than 11%. As 𝛼 increases to 2, the coverage regions of all small BSs expand and that
of the macro BS shrink. The load of the macro BS is decreased to 61%, and concurrently,
the utilization of small BSs is increased (up to 21%). Min–max policy is approximated
with a value of 𝛼 = 50. The load of the macro BS is further reduced to 45%, and the load
dispersion is decreased.

This phenomenon can also be observed in Figures 8 and 9, where optimal CRE and
loads are shown as functions of 𝛼. We see in this figure how the CREs of small BSs are
gradually increased and how the load dispersion is reduced.
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Table 2 Comparison of optimal CRE, optimal loads of BSs for
different 𝛼 (𝜏 = 10−3, 𝜛 = 10−22)

𝜶 = 0 𝜶 = 2 𝜶 → ∞
BS i c∗

i
𝝆∗

i
% c∗

i
𝝆∗

i
% c∗

i
𝝆∗

i
%

1 1 92 1 61 1 45
2 1 7 3 20 8 42
3 1 4 3 9 9 23
4 1 9 3 18 8 37
5 1 11 3 21 7 37
6 1 8 3 20 7 43
7 1 5 3 11 8 30
8 1 7 3 19 6 37
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Figure 8 Evolution of optimal CRE bias.

Fairness-Outage Trade-off Using ABS

In this section, we allow the macro BS to implement ABS and study the effect of this
technique on outage and fairness. For the sake of simplicity, we set 𝛼 = 50, 𝜏 = 10−3,
and 𝜛 = 10−22 and use LLLA. We also consider a square region  of side 2000 m in the
simulations. Three cases may be compared to evaluate the interest of using ABS:

1) No outage constraint no ABS: In this case, the macro BS does not implement ABS
(𝜃1 = 0), and we do not impose outage constraint. This serves as a benchmark to
compare with other two cases.
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Figure 9 Evolution of optimal loads.
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2) Outage constraint without ABS: We introduce here an outage constraint (Oi = 2%
for all i) but still do not allow ABS (𝜃1 = 0).

3) Outage constraint with ABS: We impose an outage constraint and allow ABS at the
macro BS.

In Figure 10, we show the cost function 𝜙𝛼 for the three considered cases. In the con-
sidered scenario, outage probabilities exceed the threshold in the first case. When outage
constraint is introduced in the second case, the cost increases because the feasible set
shrinks (some actions are not anymore available). When ABS is introduced in the third
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Figure 11 Outage probability comparisons of (a) no outage constraint no ABS, (b) outage constraint
without ABS, and (c) outage constraint with ABS (LLLA, 𝛼 = 50, 𝜏 = 10−3, 𝜛 = 10−22, and Oi = 2%).

case, the feasible set expands again and so the optimal cost of the system decreases, and
fairness is improved.

Figure 11 shows the evolution of the outage probabilities as the algorithm iterates.
With no ABS and no constraint (Figure 11a), the outage probabilities of BS 3 and 7 con-
siderably exceed the threshold of 2%. The reason is that small BSs increase their CRE
to achieve optimality without taking care of the users in outage, so that the users at
cell edge may experience a very bad signal quality. Therefore, fairness is achieved at the
cost of an unacceptable outage. Imposing an outage constraint without using ABS is
sufficient to achieve a good quality of service (Figure 11b). The function 𝜙𝛼 , however,
converges to a higher value. ABS is a good means to both meet the outage constraint
and achieve fairness (Figure 11c). The reason is that small BS cell edge users experience
a better signal quality during ABS subframes, and the ABS ratio also offers the macro
BS an additional degree of freedom for adapting its load and achieving fairness. This can
also be seen in Figure 12, where we have plotted average loads over 50 realizations after
LLLA has converged. From the first to the second case, the load vector expands because
of the smaller feasible set and then shrinks in the third case, thanks to ABS.
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Conclusions

In this article, a novel reinforcement learning approach for load balancing SON using
CRE association technique and ABS interference management technique is presented.
Our approach exploits the near-potential game structure and distributed learning algo-
rithms. We show that the load balancing problem can be solved distributively by restrict-
ing the number of neighbors, and we provide theoretical guarantees of convergence for
our algorithms. By running extensive simulations in two settings, which are complete
and partial information settings, we show that the proposed algorithms converge within
a few tens of iterations to the optimal PNE, which is also a minimizer of a 𝛼−fairness
function of the network. The convergence speed of the BLLLA that uses partial infor-
mation is comparable to the LLLA that uses complete information, meaning that partial
information is sufficient in practical implementations. Simulations show that for load
balancing, LLLA and BLLLA perform better than a variant of trial-and-error algorithm.
Finally, we show that by introducing ABS, the outages can be reduced and a better load
balancing can be achieved.
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Endnote

1 Proofs are provided in Ali et al. (2016).
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