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Abstract—Reliable group video call is one of the main services
offered by future Mission-Critical Communications (MCC). To
support its requirements, coordinated multi-point transmission
in multi-cell environments is an attractive feature for MCC over
Multimedia Broadcast Multicast Services owing to its potential
for coverage improvement and multicast transmission. In such
a scheme, full cooperation among all cells of an area achieves
the highest cooperative gain, but has stringent impact on system
capacity. A trade-off in the cluster’s size of serving cells thus
arises between high Signal to Interference plus Noise Ratio
(SINR) and network capacity. In this paper, we formulate an
optimization problem to maintain an acceptable system blocking
probability, while maximizing the average SINR of the multicast
group users. For every multicast group to be served, a dynamic
cluster of cells is selected based on the minimization of a
submodular function that takes into account the traffic in every
cell through some weights and the average SINR achieved by the
group users. Traffic weights are then optimized using a modified
Nelder-Mead simplex method with the objective of tracking a
blocking probability threshold. The proposed clustering scheme
is compared to full cooperation and to Single-Cell Point-To-
Multipoint (SC-PTM) schemes. Results show that dynamic clus-
tering offers the best trade-off between coverage and capacity
for MCC.

Index Terms—Mission-critical communications, multi-point
transmissions, MBMS, dynamic clustering, optimization.

I. INTRODUCTION

Mission-Critical Communications (MCC) are all commu-
nications related to the safety and the security of the civil
society1. They may involve public safety services, like police
forces, firemen, rescue and ambulance services, or employees
of companies managing critical infrastructures, like energy and
transportation suppliers [1]. MCC are conveyed by Profes-
sional Mobile Radio (PMR) networks, owing to their specific
requirements such as reliability, coverage and network avail-
ability [1]–[3]. One of the most important and indispensable
services offered by mission-critical networks is the group com-
munication, which is a one-to-many or a many-to-many com-
munication [4]. A group communication occurs for example
within a team of rescuers, in which the communication of one
is simultaneously received by all other team members. Group
communications provide an efficient management of the rescue
teams, and allow sending commands and sharing information

1The work of M. Coupechoux has been performed at LINCS laboratory
(www.lincs.fr).

with all contributors in a disaster area. These groups can be
predefined or formed on-demand, may have geographic areas
to cover, and may be organized based on types of skills or
activities to be performed. Group communication is based on
Multimedia Broadcast/Multicast Service (MBMS) in 3rd Gen-
eration Partnership Project (3GPP) standards. Due to its ability
to mitigate Inter-Cell Interference (ICI) and improving cell-
edge coverage, Coordinated MultiPoint (CoMP) transmission
schemes appear as natural solutions for MCC for improving
their reliability. In this paper, we propose a dynamic CoMP
clustering algorithm, which addresses two unique features
of MCC, which are the high reliability requirement and the
possibility to perform group communications.

When several Base Stations (BSs) cooperate to serve a
group of users, CoMP transmission helps mitigating ICI,
improving system throughput and cell edge performance.
The New Radio 5th Generation (5G) standard facilitates this
functionality by allowing a split of the radio protocol stack
of the next generation Node-B (gNB) between a central
unit able to coordinate several distributed units dedicated to
lower layers [5]. If all BSs of an area cooperate, we have
a Multicast/Broadcast Single Frequency Network (MBSFN)
transmission. All the BSs in an MBSFN area are synchronized
and transmit the same signal over the same radio resources
to all users of a group, so that the Signal to Interference plus
Noise Ratio (SINR) of the users is maximized. However, radio
resources can be wasted due to the transmission of data in cells
where there is no group user. Thus, MCC benefits in this case
of the best reliability in terms of coverage, but some group
calls may be blocked due to the lack of resource. Another
approach consists in transmitting the signal only in cells that
cover the group users. If several group users are located in a
given cell, the Base Station (BS) uses multicast transmission
to serve them. Several BSs serving the same group may
however interfere as resources are chosen independently. This
technique is called Single-Cell Point-To-Multipoint (SC-PTM)
by 3GPP [6] and has the advantage of maximizing the capacity
of the network at the price of a degraded SINR for the group
users, especially those at cell edge owing to the higher ICI
compared to MBSFN. More MCC group calls can be served
at the price of a degraded coverage reliability [7].

In general, there is a coverage-capacity trade-off between
the full MBSFN cooperation and SC-PTM and it may be
advantageous to consider clusters of cells cooperating using
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CoMP. In this paper, we formulate a problem to capture this
coverage-capacity trade-off in mission-critical networks using
multi-point transmissions and we propose a dynamic clustering
algorithm to solve this problem.

A. Related Work

Dynamic clustering in cooperative transmissions has been
well investigated in the literature, but mostly for unicast
best effort traffic with the goal of maximizing functions of
the user data rates under static traffic models. The different
approaches can be classified into network-centric and user-
centric clustering. In the former, a set of BSs forms a cluster,
and all the users attached to them are served by the cluster. In
the latter, each user may have its own cluster of coordinated
BSs and thus clusters for different transmissions may overlap.

Greedy algorithms based approaches have been widely used
in network-centric clustering algorithms, e.g. [8]–[12]. They
are based on the idea of sequentially adding the best BSs to
the cluster up to a certain maximum cluster size. A greedy
algorithm based on sum-rate maximization is developed in [8],
one of the first reference on BS clustering. Yoon et al. focus
in [9] on cell-edge users performance and propose a greedy
clustering algorithm to maximize the cooperation gain, along
with an interference weight calculation algorithm to reduce
complexity. Improving the spectral efficiency is the main goal
of [10], which relies on dynamic but non-overlapping clusters
formed based on a greedy approach. In [11], a dynamic BS
clustering algorithm has been proposed based on maximizing
the weighted sum rate, using a greedy iterative algorithm. This
clustering is combined with a scheduling algorithm and eval-
uated with dynamic traffic models in [12]. However, greedy
search method based clustering algorithms may not provide
the optimal cluster for group communications, since the cluster
must be designed based on all group users performance. We
note that, for computational complexity reasons, only non-
overlapping clusters are considered in these studies, which
may be sub-optimal for some users.

In an another set of papers, dynamic user-centric clustering
schemes have been investigated. In [13], the authors designed a
user-centric clustering scheme which aimed at maximizing the
average throughput of the network, subject to the limitations
on the synchronization and backhaul capacity constraints, as
well as limited number of served users per cell. However, this
scheme does not address dynamic group communications and
focuses on unicast communication average rate maximization.
Garcia et al. presented in [14] a criterion to balance the cost of
resource utilization and the radio quality induced by BS coop-
eration; this criterion penalizes in a simple way higher cluster
sizes without being related to traffic characteristics. In [15],
a user-centric joint clustering and scheduling for CoMP in
heterogeneous networks has been modeled using game the-
oretic approaches, combined with graph-coloring algorithms.
To account for the large number of cells in a dense network,
the authors proposed a scalable algorithm and assumed a
maximum cluster size. Bassoy et al. evaluated in [16] the trade-
off in CoMP clustering in the aim of improving heterogeneous
network load balancing. The proposed algorithm employs a

user-centric clustering approach assuming a limited cluster
size to maximize CoMP gains in a first stage; then, a new
clustering algorithm is used to distribute traffic gradually from
macro loaded cells into relatively less-loaded small cells.
Such scheme increases drastically model complexity when
applied to MBMS traffic. In [17], the authors study the trade-
off between cooperative gain and cost in a CoMP system;
a user-centric cluster size minimization problem subject to
rate constraints is formulated, and a sub-gradient method is
employed to solve a relaxed version of the problem, using a
Lagrangian approach. This paper considers a fixed number of
users and thus does not take into account traffic dynamics.

Although user-centric approaches proposed in the literature
offer more flexibility compared to network-centric schemes,
they are not adapted to group calls in MCC. The first reason
is that existing clustering algorithms mainly focus on the
physical data rate maximization, while MCC require improved
reliability and coverage. The second reason is that dynamic
traffic constraints are ignored, e.g. [8]–[14]. Besides, many
proposed models, such that [8]–[11], [15], [16], are limited by
a fixed or maximal cluster size, which may not be optimal for
some groups, especially in case group members are distributed
in many different cells. At last, some papers minimize the
cluster size, which contradicts the reliability requirement of
MCC, see e.g. [17].

In the literature related to MBMS, Rong et al. presented
in [18] a comparison between different MBMS transmission
schemes; they evaluated a dynamic MBSFN scheme which
only utilizes a subset of the cells for adaptively broadcasting
the signal, depending on the presence of users in the cells.
An algorithm to optimize the scheduling and resource allo-
cation for unicast User Equipments (UEs) and MBMS in a
MBSFN environment has been proposed in [19]; the authors
show the trade-off between improving user data rates through
unicast, and improving spectrum efficiency through multicast.
However, the trade-off involved by clustering is not assessed in
both studies. To the best of our knowledge, dynamic clustering
of cooperative cells has thus not been studied in the literature
in the context of mission-critical communications with the
objective of dynamically finding the right trade-off between
coverage and capacity for group communications.

B. Contributions

In this paper, our main contribution is the design of a cluster-
ing algorithm for multi-point transmissions that is able to max-
imize group average SINR under the constraint of maximum
target cell blocking probabilities for group communications in
MCC. Our detailed contributions are the following:
• We formulate a problem to capture the coverage-

capacity trade-off in mission-critical communications,
where group calls are served by multiple cells using
coordinated multi-point transmissions.

• We derive a Kaufman-Roberts-like formula for computing
the blocking probability of group calls, in every cell of a
cooperative multi-point transmission scheme.

• To solve the formulated problem, we propose a Dynamic
Clustering Algorithm (DCA) that is decomposed into
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an inner loop called Group Call Clustering Algorithm
(GCCA) and an outer loop called Cell Weights Optimiza-
tion Algorithm (CWOA).

• For every group, we formulate a submodular minimiza-
tion problem, in which the average SINR in the group
and weights related to every selected cell are taken into
account and that results in an optimal cluster of serving
BSs. The traffic weight of a cell represents a cost for using
the radio resources in this cell. This problem is solved
using GCCA inspired by the minimum-norm algorithm.
We evaluate its performance compared to a Greedy based
approach, and we show that it provides better results.

• As group calls arrive in the system, are served and leave
the system in a dynamic fashion, every cell experiences
a blocking probability that depends on its traffic weight.
We formulate a minimization problem, in which traffic
weights are optimized in order to maintain blocking prob-
abilities close to a target value. As the objective function
involves the resolution of a Markov process, we propose
CWOA, which relies on derivative-free optimization and
the Nelder-Mead simplex method to solve this problem.

• We provide simulation results showing how the proposed
framework can dynamically adapt clusters to traffic con-
ditions in order to maximize the cell coverage under
the constraint of a target blocking probability. As the
traffic intensity increases, our scheme smoothly moves
from a full cooperation scheme as in MBSFN to single
cell transmissions as in SC-PTM. We also show that
for mission-critical communications, the minimum-norm
clustering algorithm outperforms the greedy clustering,
often adopted by the literature.

The rest of the paper is organized as follows: in Section II,
we present our system model and we introduce the problem.
Our dynamic clustering algorithm is presented in Section III.
Section IV presents and discusses the simulation results and
conclusions are summarized in Section V.
Notations: For a finite set V = {1, ..., n} of n elements, we
denote 2V the set of all its subsets. Every subset S of V can
be represented by a vector in {0, 1}n denoted 1S , which has
1 at the positions of the elements of S and 0 elsewhere. Take
now x ∈ Rn, a vector of n real components. We denote xi
the component of x corresponding to the element i ∈ V .
We denote also x(S) =

∑
i∈S xi = 1TS x. A set function F

is a function from 2V to R. Equivalently, we can write:
F : {0, 1}V 7→ R. We denote {x ≥ α} the set {i ∈ V |xi ≥ α}.
For a collection of points in Rn S = {q1, ..., qm}, we denote
a f f (S) = {y ∈ Rn |y =

∑m
i=1 αiqi, αi ∈ R} the affine hull of

S and conv(S) = {y ∈ Rn |y =
∑m

i=1 αiqi, αi ∈ R+} the convex
hull of S. Standard asymptotic notations are used: O(n) for an
upper bound and Θ(n) for a tight bound.

II. MODEL AND PROBLEM FORMULATION

In this section, we present our system model, and we
introduce the clustering problem.

A. System Model

We consider the downlink of a cellular network with omni-
directional BSs serving groups of UEs2. We focus on a
specific subset V = {1, ..., n} of n cells forming an MBSFN
synchronization area and thus able to perform multi-point
transmissions to serve group of users located in this area.
When a subset S ⊆ V of BSs serves a group U of users
using multi-point transmissions, a time-synchronized common
waveform is transmitted simultaneously from S using the same
resources, to convey the common service data requested by
the group of users. User Equipment (UE) receives copies of
the signal with different delays, amplitudes and phases and
treat the multi-cell transmissions in the same way as multipath
components of a single-cell transmission without incurring
any additional complexity. It can thus benefit from spatial
diversity, increased useful signal power and reduced inter-cell
interference.

The signal received from a BS b ∈ S is part of the
useful received signal, provided that the propagation delay
does not exceed the cyclic prefix duration [20]. Hence, the
SINR experienced by the UE u can be expressed as:

γu(S) =
∑

b∈S ξubgubPT∑
b∈S(1 − ξub)gubPT +

∑
b<S PTgub + Nth

, (1)

where ξub denotes the useful portion of the signal received
by u from b (see [20] for the detailed calculation as a
function of the distance between u and b and the length of
the cyclic prefix); PT is the BS transmit power; gub is the
channel gain between u and b and Nth is the thermal noise
power. More specifically, gub = κd−η

ub
10Xub/10, where κ and

η > 2 are constants, dub is the distance between u and b and
Xub is a zero-mean Gaussian random variable with standard
deviation σ in dB, which models the shadowing effect. We
call best server of a UE, the cell providing the maximum
received power to this user, i.e., argmaxb gubPT . Channel state
information may be required at a central unit for an effective
CoMP, which may represent an overhead because of pilot
transmissions. However, in a TDD system, where channel
reciprocity applies, the overhead is independent on the number
of BSs and downlink channel estimation is based on uplink
pilots [21]. There is thus no extra overhead on the downlink.
For a multicast group U of N users served by cells in S, we
define the average SINR of the group as:

γ̄U(S) =
1
N

∑
u∈U

γu(S). (2)

If S = V , we say that we have a full MBSFN transmission or
full cooperation of the synchronization area, this is the best
choice of S for a group in terms of average SINR. If S is
made of the set of best servers without cooperation, we have
a SC-PTM transmission. Figure 1 shows an example of such
a network, where BS locations have been drawn according to
a Poisson process. The set V is shown in white, while gray
cells are outside the MBSFN synchronization area. A group
of users is shown that is served by a subset of the cells in this
area.

2In this paper, we indifferently speak about cell and BS, and about users
and UEs.
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Fig. 1: The MBSFN synchronization area is made of the white
cells (set V). Red stars represent UEs of a group. This group
is served by a cluster of cells (set S) of the synchronization
area.

B. Traffic Model and Preliminary Results

We consider a dynamic traffic model, in which group of
users arrive in the synchronization area, use a resource for
a group communication for a certain duration and leave the
system. The whole process from the start to the end of
the communication is called a group call. Group calls are
usually video calls in mission-critical communications and for
reliability reasons, MBSFN adopts a single robust Modulation
and Coding Scheme (MCS) for transmission [22]. We can thus
adopt a call blocking system, in which every call requires a
single elementary resource. We thus assume random Poisson
arrivals with rate λ [s−1] and random exponential service
duration with rate µ [s−1]. There are R resources available in
every BS. Note that CoMP transmissions imply an extra traffic
in the backhaul between BSs or in the fronthaul in a Cloud
Radio Access Network (CRAN). In case of backhaul capacity
limitation, R should be interpreted as the minimum between
the number of available resources in the radio interface and
in the backhaul/fronthaul. Let ρ = λ/µ be the traffic load.
This model has no restriction in terms of group size or
geographical distribution of group members. In particular,
individual calls can be seen as calls for groups of one or
two members, whether the other group member is outside the
MBSFN synchronization area or not.

When a group arrives in the system, it is served by a subset
S of BSs with probability pS and one resource is consumed
in every BS in S. The way S is chosen will be detailed later
on. To fix ideas, S can be the set of best servers, i.e., the BSs
providing the highest power to every user in the group; or we
can choose S = V if we want to maximize the average SINR
of the group. In general, S is chosen according to some policy
balancing the radio quality and the usage of resources. The
cardinality of 2V is P = 2n. To every element of S of 2V , we
associate a unique index s ∈ {1, ..., P}. For b ∈ {1, ..., n}, let
PV (b) = {s ∈ 2V |b ∈ S} be the elements of 2V that contain b,
i.e., the set of clusters that include BS b. The traffic model
induces a continuous-time Markov chain with state space:

E = {(n1, ..., ns, ..., nP) ∈ N
P, s.t.∑

s∈PV (b)

ns ≤ R, b ∈ {1, ..., n}, s ∈ {1, ..., P}} (3)

where ns is the number of group calls served by S. The
constraint states that in any cell b, no more than R resources
can be allocated. The transition rate between x and y ∈ E is
given by:

q(x, y) =


psλ if y = x + es
xsµ if y = x − es
0 otherwise

(4)

where es = (0, ..., 1, ..., 0) with 1 at the s-th coordinate.
Define q(x, x) = −

∑
y,x q(x, y). Let Q = (q(x, y))x,y∈E be

the infinitesimal generator of the Markov process and π(x)
the stationary probability of being in state x, we have πQ = 0.
Let Bs = {(n1, ..., nP)|∃b ∈ s s.t.

∑
t∈PV (b) nt = R}: these are

the states that are blocking for calls requiring the activation
of the BSs in cluster s because at least one station in s has
already R resources occupied.

Proposition 1. The stationary probabilities of the Markov
process (E,Q) are given by:

π(x) = π(0)
(p1ρ)

n1

n1!
...
(pPρ)

nP

nP!
, ∀x ∈ E (5)

where π(0) is obtained by normalization.

Proof. Setting R = ∞, the random process is equivalent to
P independent birth-and-death processes. It is thus reversible
and its stationary probabilities are the product of the stationary
probabilities of the independent processes. When R < ∞, the
process is a truncation of a reversible process. Hence the result.

�

Corollary 1. The blocking probability for group calls served
by the BSs in s is:

Π(s) =
∑
x∈Bs

π(x). (6)

The overall blocking probability is:

Π =

P∑
s=1

psΠ(s). (7)

We now focus on every individual cell b ∈ V and compute
the probability that this cell has R resources occupied. For
i = 1, ..., n, let vi = [vi1...viP]T be the vector such that vis = 1
if i ∈ s and 0 otherwise. Let ζ(m1, ...,mn), 0 ≤ mi ≤ R, ∀i,
be the function defined as follows:

ζ(m1, ...,mn) =
∑

x∈E |∀i, xT vi=mi

(p1ρ)
n1

n1!
...
(pPρ)

nP

nP!
. (8)

This is a quantity that is proportional to the joint probability
that cell 1 serves m1 calls, cell 2 serves m2 call,..., cell n serves
mn calls.

Lemma 1. We have for any mi , 0 in {m1, ...,mn}:

ζ(m1, ...,mn) =
1

mi

P∑
j=1

pj ρvi jζ(m1 − v1j, ...,mn − vnj) (9)

with ζ(0, ..., 0) = 1 and ζ(m1, ...,mn) = 0 whenever ∃i s.t.
mi < 0.

Proof. See Appendix A. �
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Proposition 2. For a BS b, the probability that b has R
resources occupied is given by:

Π̃(b) =

∑
∀k,b, mk=0,...,R ζ(m1, ...,mb = R, ...,mn)∑

∀k, mk=0,...,R ζ(m1, ...,mn)
, (10)

where at the numerator, R is the value taken by the variable
mb .

With a slight abuse of vocabulary, we call this probability,
the blocking probability in station b. It is clear that the policy
for choosing S plays an important role in terms of traffic: the
higher the probability for a BS b to be chosen, the higher the
traffic load in this cell and the higher the probability Π̃(b) to
have no resource available for a new call.

Despite its accuracy in modeling group call performance,
the blocking probability of a BS b provided in Proposition 2
has an exponential complexity, which is detrimental in large
networks. Therefore, we can approximate this probability by
using the Erlang-B law as follows:

Π̃(b) ≈ EB(b, R) =
ρR
b

R!∑R
r=0

ρr
b

r!

, (11)

where EB(b, R) is the classical Erlang-B law and ρb =
ρ
∑P

s=1 psvbs is the traffic load in cell b. Although this sum
has still 2n terms, ρb can be in practice measured by BS b
so that the load is obtained at very low cost. Moreover, the
blocking probability given in (11) can be evaluated in O(R),
provided that ρb is evaluated in O(1), using the following
recursive classical formula:

EB(b, R) =
ρbEB(b, R − 1)

R + ρbEB(b, R − 1)
(12)

and EB(b, 0) = 1. This equation is an approximation of (10)
in the sense that it ignores the correlation between loads in
different cells induced by group calls.

C. Problem Formulation

The clustering policy to select the set S for a given group
is based on a minimization problem. Our aim is to strike a
balance between the radio quality of the group, measured by
its average SINR and the amount of resources used in the
network to serve this group. For this, we define the weight ωb

of a BS b, a free parameter that represents the cost of using
resources in station b in a multi-point transmission. Our policy
consists in choosing for the group U a set S∗ that solves the
following set function minimization problem:

min
S∈PV

ΨU(S) , ω(S) − γ̄U(S) (13)

where ΨU : PV 7→ R is a set function balancing the cost and
the radio quality, S is the set of serving BSs, ω(S) =

∑
b∈S ωb

is the sum of the weights of the stations in S, and γ̄U(S) is
the mean SINR of UEs u ∈ U when the group is served by S.
By convention, we set ΨU(∅) = 0.

The objective function is made of two terms. The first term
captures a cost of using cells in S in terms of traffic. Highly
loaded cells have indeed large weights and are thus less likely
to be chosen. Lightly loaded cells have small weights and are

more likely to be included in the cluster. The second term
captures the fact that we want to increase the SINR of the
group and thus the communication reliability. Note that we
have not considered user data rate as an objective function as
it is usually done in the literature because group calls have a
fixed data rate and reliability is the main requirement in MCC.

Clusters are formed dynamically for every group call ac-
cording to the above clustering policy. For a fixed vector
of weights ω ∈ Rn, the traffic demand together with the
clustering policy induces a blocking probability Π̃(b;ω) in
every cell b that we make now explicitly dependent on the
weights vector. If Π̃(b;ω) is high, it is natural to increase the
weight ωb because the quality of service in this cell is poor.
On the contrary, if Π̃(b;ω) is very small, we can decrease its
weight so that this cell is chosen with higher probability and
allows to increase the SINR of the users. We thus define target
blocking probabilities Π̄(b) that every cell should attain. We
now formulate a second minimization problem:

min
ω∈Rn

G(ω) ,
n∑

b=1
‖Π̃(b;ω) − Π̄(b)‖2 (14)

where G : Rn 7→ R+ is a real valued function representing
the quadratic error with respect to the targets, Π̃(b;ω) is
the blocking probability of cell b when the clustering policy
is applied with weights ω and Π̄(b) is the target blocking
probability for cell b. Therefore, our problem is resolved by
finding ω∗, a minimizer of G:

G(ω∗) = min
ω∈Rn

G(ω). (15)

III. A DYNAMIC CLUSTERING ALGORITHM

In this section, we show how the above problems are solved.

A. Dynamic Clustering Algorithm

The Dynamic Clustering Algorithm DCA is illustrated in
Fig. 2 and its pseudo-code is given in Algorithm 1. It is
executed in a central entity for the whole synchronization area
and selects a set of serving cells for every new group arrival.
The algorithm can be run either in the Central Unit (CU) of
a CRAN or in a Software Defined Network controller in the
core network. In both cases, the central entity controls the
transmissions of all BSs. The algorithm proceeds by periods
of duration T (T is sufficiently long in order that the Markov
process of group call arrivals and departures has reached the
stationary regime). During a period, the weights are fixed, the
minimization problem (13) is solved at every group arrival by
GCCA, and traffic statistics are gathered. At the end of every
period, the minimization problem (14) is solved by CWOA and
weights are updated.

To be more specific, the algorithm is called at every group
arrival (steps 5-11) and every T seconds (steps 12-18). When a
group call arrives at a certain time instant τ (step 5), the set of
serving cells is determined (step 7) by solving the optimization
problem (13) with GCCA (DCA inner loop). Time is updated
(step 6) and we record the number of calls during the period
with the variable M (step 6). The number of group calls served
by the same set of cells S is incremented (step 8). The group
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Fig. 2: Dynamic Clustering Algorithm (DCA). GCCA is called
at every group arrival. CWOA is called every T .

of users is served with S (step 9). The duration of the call
is recorded with variable D (step 10). At the end of a period
(step 12), the probabilities of every subset are computed (step
14) and the load ρ is estimated (step 15). We see here that
pS and ρ are not inputs of our solution but are learned by the
algorithm itself. New weights are computed by solving the
optimization problem (14) (step 16) with CWOA (DCA outer
loop). Variables M , D, and nS′ are reinitialized before the
next period starts (step 17). As we see, algorithms GCCA
and CWOA are embedded in DCA. They are now described
in Sections III-B and III-C, respectively.

Algorithm 1: DCA (executed in a central entity for the
entire synchronization area)

1: Input: T , Π̄(b)∀b.
2: Output: For every group of users, a set S of

cooperative serving cells.
3: Init: t ← 0; t ′← 0; ω← 0; ∀S′ ⊆ V, nS′ ← 0;

M ← 0; D← 0
4: while true do
5: if a new group U arrives at τ then
6: t ← τ; M ← M + 1
7: S ← GCCA(U,ω), see Algorithm 3
8: nS ← nS + 1
9: Serve group U with S.

10: D← D+ duration of this call
11: end if
12: if |t − t ′ | ≥ T then
13: t ′← t
14: ∀S′ ⊆ V, pS′ ← 1

M nS′
15: λ← M

|t−t′ | ; µ←
M
D ; ρ← λ

µ

16: ω← CWOA(ρ, pS′∀S′ ⊆ V , Π̄(b)∀b), see
Algorithm 5

17: M ← 0; D← 0; ∀S′ ⊆ V, nS′ ← 0
18: end if
19: end while

B. Group Call Clustering Algorithm

In this section, we focus on the first minimization prob-
lem (13). We first detail GCCA and then describe the Greedy
Clustering algorithm for the sake of comparison.

1) GCCA: We show that, for a given group of users U and
a given set of weights ω ∈ Rn, problem (13) is a submodular
minimization problem. Then, we use the submodular proper-
ties and the minimum-norm algorithm to minimize the ΨU
function.

Definition 1 (Submodular Function [23]). A set function F :
2V 7→ R is submodular if and only if, for all subsets A, B ⊆ V
and e ∈ V such that A ⊆ B and e < B, we have: F(A ∪ e) −
F(A) ≥ F(B ∪ e) − F(B).

Moreover, a function F is supermodular if −F is submodu-
lar and a function F that is both submodular and supermodular
is called modular. A function F is modular if and only if
there exists ω ∈ Rn such that F(A) =

∑
e∈Aωe for all A ⊆ V .

Besides, the linear combination of submodular functions is
submodular, and submodularity is preserved under taking non-
negative linear combinations [23].

Proposition 3. For a given group U and a given weight
vector ω ∈ Rn, the objective function ΨU defined in (13)
is submodular.

Proof. See Appendix B. �

Two important sets play a role in submodular function
minimization.

Definition 2 (Submodular and Base Polyhedron [23]). Let F
be a submodular function such that F(∅) = 0. The submodular
polyhedron PF and the base polyhedron BF are defined as:

PF = {ω ∈ Rn : ω(A) ≤ F(A) for all A ⊆ V}

BF = {ω ∈ PF : ω(V) = F(V)}

The connection between submodular function minimization
problem and the base polytope is given in the following lemma
deduced from the seminal work of Fujishige in [24].

Lemma 2 ( [23]). For a given x ∈ Rn, Algorithm 2 solves the
linear minimization problem minp∈BF xT p over BF . More-
over, all extreme points of BF can be obtained using this
algorithm using all possible ordering of x coordinates.

Lemma 3 ( [23], [24]). Let F be a submodular function such
that F(∅) = 0. Let s∗ be the point of BF with minimum-norm,
i.e., s∗ = arg mins∈BF

1
2 | |s | |

2
2 . The minimal minimizer of F is

{ j ∈ V |s∗j < 0}.

We thus see that minimizing a submodular function is
equivalent to find the minimum-norm point of its base poly-
hedron. Wolfe has described in [25] an iterative procedure to
find minimum norm points in polytopes. Although the base
polytope has exponentially many constraints, a simple linear
optimization method can minimize any linear function over
it. Therefore, Fujishige has suggested in [26] to use Wolfes
procedure on the base polytope coupled with Algorithm 2
as a natural approach to submodular function minimization.

marceaucoupechoux
Note
Unmarked définie par marceaucoupechoux
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Algorithm 2: Linear optimization over the base polyhe-
dron.

1: Input: x ∈ Rn

2: Output: q = arg minp∈BF xT p
3: Sort the coordinates of x in increasing order :

xj1 ≤ xj2 ≤ ... ≤ xjn,

where { j1, ..., jn} is a permutation of the elements of
V = {1...n}.

4: Define for q = {qjk }k=1,...,n such that :

qjk = F({ j1, ..., jk}) − F({ j1, ..., jk−1}),

with F({ j1, ..., jk−1}) = F(∅) = 0 for k = 1.
5: return q

Algorithm 3 shows the procedure, inspired by [27], to solve
(13). We provide in the following a brief explanation of the
different steps of the algorithm.

Following [25], let’s call a corral, a set of points whose
affine minimizer is also in its convex hull. Along the algorithm,
a set S is populated with vertices of BF . If this set of vertices
is sufficient to find the minimum norm point of BF , the
algorithm stops. Otherwise, a new vertex is added to S and
some vertices are removed so that S becomes a corral. The
algorithm thus proceeds by major cycles (steps 4-19) and every
major cycles possibly involves several minor cycles (steps 8-
17). At the beginning of a major cycle (step 5), we have a
corral S together with its affine minimizer x ∈ conv(S). If
this x verifies the optimality condition, the algorithm stops
(step 6). The instruction S∗ ← {i |xi < 0} provides the set
of BS indices that form the cluster. Note that the optimality
check is a simple condition resulting from the convexity of
BF . Otherwise, a new point from the vertices of BF (step
5) is added to S (step 7) and minor cycles start. A vertex
of BF is obtained by means of Algorithm 2, as explained in
Lemma 2. In the minor cycle, the new affine minimizer y of
S is computed (step 9). This operation is a standard quadratic
minimization problem with linear constraints, see Appendix C.
If by chance y ∈ conv(S) (step 10), then S is a corral and a new
major cycle starts with S and x ← y. Otherwise (steps 12-16),
x is moved in the direction of y (step 14) up to the boundary
of conv(S) (steps 13 and 14). As we are on the boundary of
conv(S), at least one point of S is not necessary any more to
describe x. Such points are removed from S (step 15). When
writing x =

∑
i λiqi , only the qi corresponding to λi > 0 are

kept in S. Minor cycles continue until a corral is found (step
11). In this case, x and y can coincide (step 18) and a new
major cycle starts with this corral and x. At the initialization
of the algorithm, it is required to start with a vertex of BF . We
proceed as follows. According to Theorem 2.1 of [28], every
minimization problem of the form minx∈BF pT x provides a
vertex of BF . As this minimization problem is solved using
Algorithm 2, every permutation of {1, 2, ...,V} generates a
vertex of BF . So for the initialisation of the algorithm, we
can choose the identity permutation. As a result, defining
for k = 1, ...,V : qk = F({1, ..., k}) − F({1, ..., k − 1}) with

F({1, ..., k − 1}) = F(∅) = 0 when k = 1, provides a vertex of
BF .

Algorithm 3: GCCA
1: Input: A group U. A weight vector ω ∈ Rn.
2: Output: A set S∗ of serving cells solving (13).
3: Init: F ← ΨU . Let q be a vertex of BF (see

Algorithm 2 and Lemma 2); x ← q; S ← {q}; let λi
s.t. x =

∑
i λiqi; λ1 ← 1

4: while true (major cycle) do
5: q← arg minp∈BF xT p, (see Algorithm 2 and

Lemma 2)
6: if | |x | |2 = xT q then Return S∗ ← {i |xi < 0} end if
7: S ← S ∪ {q}
8: while true (minor cycle) do
9: y ← arg minz∈aff(S) | |z | |; let αi s.t. y =

∑
i αiqi

10: if αi ≥ 0 for all i % y is in conv(S) then
11: break.
12: else
13: θ ← mini:αi<λi λi/(λi − αi)
14: x ← θy + (1 − θ)x; λ← θα + (1 − θ)λ
15: S ← {qi : λi > 0}
16: end if
17: end while
18: x ← y; λ← α
19: end while

Lemma 4. Every iteration of Algorithm 3 has a O(n2)
complexity.

Proof. Algorithm 2 complexity is dominated by the sorting of
the coordinates of x and is thus in O(n log n). The minimiza-
tion over the affine hull in step 9 has a complexity in O(n2).
All other steps are in O(n). �

It is however not known how many iterations are required
for the termination. Our simulation results show that very few
iterations are in practice required in our case.

2) Greedy Clustering: The greedy algorithm has been
widely used in the literature on clustering for multi-point
transmissions, see e.g. [8]–[12]. For comparison with GCCA,
we thus adapt the greedy approach to our context in order to
find an approximate minimizer of the function ΨU for a given
group of users U and a set of weights ω ∈ Rn. The Greedy
Clustering, summarized in Algorithm 4, consists in initializing
the cluster of BSs as the set of best server cells of group users
(step 3). Then, at every iteration and if possible, we add to
the cluster the BS that decreases at most the objective function
(13) (steps 5-12). If there is no such BS (step 13) or if we have
reached the whole set of cells (step 16), we return the current
cluster (steps 17 or 14). Note that Algorithm 4 requires n − 1
iterations in the worst case and has thus a complexity in O(n).

C. Cell Weights Optimization Algorithm

In this section, we consider the problem of finding a min-
imum of the real-valued function G (see (15)). The difficulty
lies in the fact that a closed-form of G is not available
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Algorithm 4: Greedy Clustering.
1: Input: A group U. A weight vector ω ∈ Rn.
2: Output: A set S of serving cells solving (13) and the

value F of the objective function.
3: Init: Let S the set of best server BSs of U members;

S̄ ← V\S; F ← ΨU(S).
4: while S̄ , ∅ do
5: for j ∈ S̄ do
6: ΨU, j ← ΨU(S ∪ { j})
7: end for
8: if ΨU(S) > minj∈S̄(ΨU, j) then
9: b← arg minj∈S̄(ΨU, j)

10: S ← S ∪ {b}
11: S̄ ← S̄\{b}
12: F ← minj∈S̄(ΨU, j)

13: else
14: return S, F
15: end if
16: end while
17: return S, F

as its evaluation requires to solve a Markov process. An
interesting class of methods for solving derivative-free (or
black box) functions are the direct search methods, which
update iteratively an initial assumption of a solution using a
few function evaluations along linearly independent directions.
The most popular is the Nelder-Mead simplex method [29].
We thus propose CWOA, an adaptation of this method for
the cell weight optimization, that includes a new random
oriented restart procedure, see Algorithm 53. The algorithm
is an heuristic that operates on an n-dimensional simplex
of n + 1 vertices, and aims to improve the ”worst” vertex
(i.e., with highest objective function value), through certain
transformations of the simplex. These transformations are done
with respect to a centroid vector (step 20), which is nothing
else than the average vector of the simplex. We thus start with
n + 1 random vectors ω (step 3) that are sorted according to
the objective function (step 6). To speed up the convergence,
it is preferable to randomly draw initial weights with the same
order of magnitude as average group SINRs (this can be easily
obtained by a pre-processing step). With period I (step 7, using
mod, the modulo operator), we check if the standard deviation
of the blocking probability around their target values is small
and if it is the case, we return the best weight vector (step
8-10). In step 8, stddev provides the standard deviation of a
set of values. Otherwise, we perform a random oriented restart,
i.e., we randomly generate new weights for the cells, which
are far from their target (steps 11-18). In step 11, rand(1, n)
outputs a vector of n values uniformly drawn between 0 and
1. In step 12, the notation (ωi)b indicates the b-th coordinate
of vector ωi .

The possible transformations of the simplex are illustrated
in Fig. 3. In a Reflection (steps 21-23), the worst vector (ωn+1)
is reflected with respect to the centroid and the reflected point

3In this algorithm, the symbol % is used for a commented line (not executed
by the algorithm).

replaces the worst vector if the objective function is decreased
at this point. Expansion (steps 24-26) and contraction (steps
28-30, 35-37) are two other possible transformations. The
simplex is shrunk (steps 32 and 39), towards the best vertex,
whenever it is not improved by the preceding transformations,
and a new iteration is then started. A restatement of the original
Nelder-Mead (NM) algorithm [29] has been presented in [30],
and is the basis of Algorithm 5.

Algorithm 5: CWOA
1: Input: A set of parameters −1 < δic < 0 < δoc < δr < δe and 0 < δs < 1,
ε1 > 0, ε2 > 0, I ∈ N\{0}, ρ, pS′∀S′ ⊆ V , Π̄(b)∀b ∈ V .

2: Output: A weight vector ω∗ ∈ Rn solving (14).
3: Init: f ← G. Generate n + 1 vertices ω ∈ Rn . It ← 0.
4: while true do
5: It ← It + 1
6: Sort the vertices according to the objective function values:

f (ω1) ≤ ... ≤ f (ωn+1)
7: if f (ωn+1) − f (ω1) > ε1 or mod(It,I)= 0 then
8: if stddev(Π̃(b;ω1), b ∈ V ) < ε2 then
9: Return ω∗ ← ω1

10: end if
11: b ← arg min j∈V Π̃(j;ω1); θ ←rand(1, n + 1)
12: ∀i ∈ {1, ..., n + 1}, (ωi )b ← (ωi )bθi
13: θ ←rand(1, n + 1)
14: for b ∈ V do
15: if Π̃(b;ω1) > Π̄(b) then
16: ∀i ∈ {1, ..., n + 1}, (ωi )b ← (ωi )b/θi
17: end if
18: end for
19: end if
20: % Compute the centroid (ω0) of all vertices except ωn+1: ω0 ←

1
n

∑n
i=1 ωi

21: % Reflection: Compute reflected point: ωr ← ω0 + δr (ω0 −ωn+1)
22: if f (ω1) ≤ f (ωr ) < f (ωn) then
23: ωn+1 ← ωr

24: else if f (ωr ) < f (ω1) then
25: % Expansion: Compute the expanded point: ωe ← ω0 + δe (ωr −ω0)
26: if f (ωe ) < f (ωr ) then ωn+1 ← ωe else ωn+1 ← ωr end if
27: else if f (ωn) ≤ f (ωr ) < f (ωn+1) then
28: % Outside contraction: Compute the contracted point:

ωoc ← ω0 + δoc (ωr −ω0)
29: if f (ωoc ) ≤ f (ωr ) then
30: ωn+1 ← ωoc

31: else
32: Shrink: ωi ← ω1 + δs (ωi −ω1);∀i ∈ {2, ..., n + 1}
33: end if
34: else
35: % Inside contraction: Compute the contracted point:

ωic ← ω0 − δic (ωn+1 −ω0)
36: if f (ωic ) ≤ f (ωn+1) then
37: ωn+1 ← ωic

38: else
39: Shrink: ωi ← ω1 + δs (ωi −ω1);∀i ∈ {2, ..., n + 1}
40: end if
41: end if
42: end while

However, despite its generally good performance, the NM
algorithm can stagnate, fail to converge or converge to a
non-optimal vertex, even for simple and convex objective
functions. Then, numerous variants of this algorithm have been
developed and analyzed, aiming to improve its performance
and converge to a stationary vertex under mild conditions on
the objective function. A possible improvement of the original
algorithm is to impose restarts of the algorithm during the
optimization run at certain iterations, by applying a fresh
simplex. A restart is global when it is completely independent
of previous results. It is local when a new simplex is initialized
using the best known solution and a projection of the most
recent simplex. However, such schemes, e.g. the globalized
bounded NM [31], increase significantly the number of iter-
ations of the algorithm, and don’t provide good solutions to
our problem, as observed in our simulations.
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Fig. 3: Simplex operations in R2 (white dots indicate the worst
vertices before operations; solid dots indicate new simplex).

Therefore, we propose an oriented restart of the NM al-
gorithm adapted to our model (steps 8-19). The idea is to
reinitialize the simplex by modifying the weights of the cells
having blocking probabilities far from their target. At every
restart, the weight of cells having the lowest blocking proba-
bility are decreased, while the weight of cells having blocking
probabilities higher than their targets are increased. A random
perturbation is applied to every modification. The proposed
restart scheme is applied periodically at the beginning of the
NM algorithm major cycle. The period is controlled by the
integer parameter I in Algorithm 5.

D. Complexity Analysis

The general complexity of the Nelder-Mead algorithm has
not been assessed in the literature [32]. However, the complex-
ity of a single iteration of Nelder-Mead algorithm has been
assessed in [32] and depends on the complexity of evaluating
the objective function. In our case, we have the following
results for CWOA and then for the overall complexity of DCA.

Lemma 5. Each iteration of CWOA has a complexity in
Θ(n + R) (when shrink is not needed) or Θ(n2 + R) (shrink
is used) when the Erlang-B approximation (12) is adopted
for the evaluation of G. Each iteration has an exponential
complexity when (9) is adopted for the evaluation of G.

Lemma 6. Let λ be the number of group arrivals per second.
Let N1 and N2 be the numbers of iterations of GCCA and
CWOA, respectively at every algorithm call. Then, the overall
complexity of DCA is in O(λT N1n2 + N2n2 + N2R) for every
period of duration T .

IV. SIMULATION RESULTS

In this section, we show that GCCA and CWOA converge
in few iterations in a realistic scenario. We have indeed no

theoretical guaranty on these numbers. We show that DCA
meets the blocking probabilities targets and is adaptive with
respect to the traffic load. At last, we compare our solution
to existing schemes, i.e., Greedy, globalized bounded Nelder-
Mead, SC-PTM and full MBSFN cooperation.

A. Simulations Settings

We evaluate the performance of the proposed scheme in
a MBSFN synchronization area of 14 BSs. All cells outside
this area are interfering (see Fig. 1). For any computed
cluster S and any randomly generated group U, the SINR
of every group member and the average SINR of the group
are numerically evaluated using (1) and (2). Note that weights
are dynamically adjusted by CWOA along the simulation. In the
simulations, for simplicity reasons, we ignore the correlation
between blocking probabilities in different cells and adopt
the Erlang-B approximation. In order to assess the traffic
dynamics in our evaluations, we assume the following users
and group distributions4: 25% of arriving UEs are served by
BS1 (an overloaded cell), 3% of them are dropped in BS7 (an
underloaded cell), while other UEs are uniformly distributed
in the other cells of the synchronization area; 50% of arriving
groups are centralized, i.e., all the users are distributed in the
closest area (of radius 1.5 km) of a group leader UE. In the
remaining groups, the UEs are randomly distributed in the
target network. These assumptions induce heterogeneous cell
loads and heterogeneous group users distributions. The other
system simulation parameters are given in Tab. I. They are
typical for mission-critical communications.

Parameter Value
Carrier frequency 700 MHz

Channel Bandwidth (W ) 5 MHz
Groups arrival rate (λ) 1/55 s−1

Mean service duration (1/µ) 180 s
Available resources per BS (R) 5 resources
Number of users per group (N ) 10 UEs/group
Clustering algorithm period (T ) 30 minutes
Target blocking probability Π̄(b) 2%

NM parameters {δr , δe, δoc, δic, δs } {1, 2, 1/2, −1/2, 1/2}

TABLE I: Simulation parameters.

B. Group Call Multi-point Transmission

We focus here on the results provided by GCCA, Algo-
rithm 3. Fig. 4 shows the evolution of function ΨU along
algorithm’s iterations for the proposed scheme, evaluated with
the weight vector provided by CWOA at the end of the simu-
lation. The values of the objective function for SC-PTM and
full MBSFN cooperation are provided for comparison. Results
show that these schemes are outperformed by GCCA and that
the submodular minimization problem (13) is solved in very
few iterations. In Fig. 5, we compare for a specific group the
Greedy Clustering with GCCA and show the objective function
along the iterations of the two algorithms. GCCA stabilizes in
very few iterations and outperforms Greedy. Unfortunately, we

4These figures are taken from a typical use case for MCC, experienced by
ETELM.
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Fig. 4: Evolution of ΨU along the iterations of GCCA.

don’t have any guaranty on the number of iterations. In the
seminal paper of Fujishige et al. [33], it is shown by numerical
experiments that the number of iterations increases with the
number of vertices. It is thus expected that the number of
iterations would increase for larger MBSFN synchronization
areas. In the same paper, we note that very few iterations
are required to reduce drastically the duality gap, which is in
line with our experiments. We observe that greedy, a widely
used algorithm for multi-point transmission clustering, may
not provide the optimal solution.
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Fig. 5: Comparison of GCCA with Greedy Clustering.

C. Objective Function and Blocking Probabilities

Fig. 6 shows the evolution of the objective function G (a),
of cell weights (b) and of blocking probabilities (c) for each
cell along the iterations of DCA. If the blocking probabilities
are above the targets, this means that the network is unable
to sustain the traffic load, i.e. that capacity is not sufficient.
In Fig. 6a, we see that the function G decreases until it
converges in few tens of iterations to a value close to 0 when
blocking probabilities of all cells are close to corresponding
targets. Along the algorithm, the cell weights and blocking
probabilities fluctuate, especially at the iterations correspond-
ing to random oriented restarts, until the probabilities reach
their fixed targets (2%), see Fig. 6b. Note that the weight of
BS1 is very high compared to other weights because this cell
is overloaded. In Fig. 6c, the first iterations of DCA reveals
that the blocking probabilities are very high, close to the ones
achieved with full MBSFN cooperation (13.4%). This means
that cluster sizes are large with initial weights. Gradually,
the cluster sizes decrease, so that blocking probabilities reach
their target value. This means that DCA meets the blocking
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Fig. 6: Evolution of the objective function G, cell weights and
blocking probabilities along the iterations of DCA.

constraint. With SC-PTM, the blocking probability is 3% and
0.01% in the overloaded and underloaded cells respectively,
and falls below 0.8% in all other cells. Thus, SC-PTM provides
the best performance in terms of blocking, however at the
cost of lower coverage as we will see. Fig. 7 shows for a
given group the cluster evolution provided by DCA along some
iterations.

In Fig. 8, we test the globalized bounded NM [31] in
place of CWOA (implementing random oriented restart) on the
same simulated scenario and show the evolution of G with
this scheme. We see that for our problem, the function G
and the cell weights are still fluctuating after 2000 iterations
with the globalized bounded NM, whereas with our random
oriented restart, few tens of iterations were sufficient to obtain
convergence (see Fig. 6a).

D. SINR Improvements

In order to compare the performance of different trans-
mission schemes in terms of coverage, we show in Fig. 9
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Fig. 7: Evolution of the cluster of a given group along some
iterations of DCA. The cluster serving the group is formed by
the blue cells, while the white cells are interfering. The links
show the best server of each UE.
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Fig. 8: Evolution of the objective function G and blocking
probabilities for some BSs along the iterations of globalized
bounded NM algorithm.

the distribution of the mean group SINR with SC-PTM, full
MBSFN cooperation and DCA. Coverage is indeed closely
related to the SINR distribution since it can be defined as
the probability that for a group the SINR is above a certain
threshold. The SINR depends of course on clusters size.
Thus, full MBSFN cooperation scheme provides the best
SINR results, since all BSs inside the synchronization area
contribute to the transmission. On the other hand, in SC-

PTM, there is no cooperation between BSs and only the UEs
best server cells contribute independently to the transmission,
therefore, the SINR values are the lowest in such a scheme.
Since in dynamic clustering the cluster size is intermediate
between those schemes, it leads to moderate SINR gains. As
a conclusion, in the proposed scheme, the target blocking
probabilities allows to trade capacity against coverage.
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Fig. 9: Mean group SINR distribution with SC-PTM, full
MBSFN cooperation and DCA.

E. Impact of Traffic Intensity

We now show how in extreme cases of traffic our scheme
tends to full MBSFN cooperation or SC-PTM. In Fig. 10a a
very low traffic is considered, so that all cells can cooperate
to serve groups without violating the blocking probability
constraint. In Fig. 10b, a high traffic is assumed. Cells are
selected as in SC-PTM. The SINR is however improved
because we assume that serving cells cooperate to serve the
groups whereas SC-PTM serving BSs interfere each others.
This shows our approach self-adapts to traffic conditions and
includes MBSFN and SC-PTM as special cases. Note that SC-
PTM and full MBSFN are two simple approaches, so that the
advantages of DCA are obtained at the cost of an increased
complexity. However, when compared to full MBSFN, DCA
can sustain a higher input traffic load given a target blocking
probability. When compared to SC-PTM, DCA guarantees to
maximize the SINR if there are available resources in other
cells and thus increases SINR given the same target blocking
probability.

V. CONCLUSION

In this paper, we formulate a problem to capture the
coverage-capacity trade-off arising in mission-critical net-
works serving group of users by means of cooperative multi-
point transmissions. A Dynamic Clustering Algorithm (DCA)
is proposed to solve this problem that is made of an inner
loop GCCA and an outer loop CWOA. We consider a dynamic
traffic in which group calls arrive, are served by a cluster of
cells and leave the system. For every group, GCCA minimizes
a submodular function that captures the trade-off between the
average group SINR and cell weights representing a cost for
the radio resource utilization. At a larger time scale, cell costs
are optimized by CWOA in order that the blocking probability
in every cell is close to a target. We rely here on derivative-
free optimization and more specifically on the Nelder-Mead
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Fig. 10: Mean group SINR distribution with low (a) and
high (b) traffic intensities.

simplex method that we extend by including a random oriented
restart. The comparison of the proposed scheme with SC-PTM
and full MBSFN cooperation schemes show that DCA is able
to adapt to traffic variations by maximizing the coverage under
the constraint of a blocking probability.

APPENDIX

A. Proof of Lemma 1

The proof is similar to the derivation of the Kaufman-
Roberts formula [34]. We assume that there is at least one
mi , 0. Let m = (m1, ...,mn), x = (n1, ..., nP), and E(m) =
{x ∈ E|∀ j, xT vj = mj}. Now:

ζ(m) =
∑

x∈E(m)

(p1ρ)
n1

n1!
...
(pPρ)

nP

nP!

=
∑

x∈E(m)

xT vi
mi

(p1ρ)
n1

n1!
...
(pPρ)

nP

nP!

=
1

mi

∑
x∈E(m)

P∑
j=1

njvi j
(p1ρ)

n1

n1!
...
(pPρ)

nP

nP!

=
1

mi

∑
x∈E(m)

P∑
j=1

pj ρvi j
(p1ρ)

n1

n1!
...
(pj ρ)

n j−1

(nj − 1)!
...
(pPρ)

nP

nP!

=
1

mi

P∑
j=1

pj ρvi j
∑

x∈E(m)

(p1ρ)
n1

n1!
...
(pj ρ)

n j−1

(nj − 1)!
...
(pPρ)

nP

nP!

=
1

mi

P∑
j=1

pj ρvi jζ(m1 − v1j, ...,mn − vnj).

B. Proof of Proposition 3

For a user u ∈ U, we first show that γu is supermodular.
Take A ⊆ B ⊆ V , e ∈ V\B and denote: γu(A) =

a1
a2

, γu(B) =
b1
b2

and c ≥ 0 the useful power received by u from e, so that
γu(A ∪ e) = a1+c

a2−c
and γu(B ∪ e) = b1+c

b2−c
. From the inclusions

of sets and the conservation of the system energy, we have
a1 ≤ b1, a2 ≥ b2, a1 + a2 = b1 + b2, a2 − c ≥ 0 and b2 − c ≥ 0.
From the two last inequalities, we deduce that a2 + b2 ≥ 2c.
Now the inequality γu(A ∪ e) − γu(A) ≤ γu(B ∪ e) − γu(B) is
equivalent to a2 + b2 ≥ c, which is always verified whatever
A ⊆ B ⊆ V , e ∈ V\B and u ∈ U. We have indeed: γu(A ∪
e) − γu(A) =

c(a1+a2)
a2(a2−c)

and γu(B∪ e) − γu(B) =
c(b1+b2)
b2(b2−c)

, so that
the inequality is successively equivalent to:

b2(a1 + a2)(b2 − c) ≤ a2(b1 + b2)(a2 − c)

b2
2a1 + b2

2a2 − b2a1c − b2a2c ≤ a2
2b1 + a2

2b2 − a2b1c − a2b2c

b2
2(a1 + a2) − a2

2(b1 + b2) ≤ c(b2(a1 + a2) − a2(b1 + b2))

a2 + b2 ≥ c

By non-negative linear combination, we deduce that γ̄U is
also supermodular and −γ̄U is submodular. The function ΨU
is the sum of a submodular function and a modular function,
so it is submodular.

C. Affine Minimizer

The problem to be solved in step 9 of Algorithm 3:
y = arg minz∈aff(S) | |z | |. Let S = {q1, ..., qm}, α = [α1 ... αm]

T ,
Q = [q1 q2 ... qm], and A = 2QTQ. Define the affine hull of
S as follows: aff(S) , {

∑m
i=1 αiqi |qi ∈ S and

∑m
i=1 αi = 1}.

We remark that: | |
∑m

i=1 αiqi | |
2 = | |Qα | |2 = (Qα)T (Qα) =

αTQTQα. So that the problem in step 9 of the algorithm
becomes: min 1

2α
T Aα s.t. 1Tα = 1 and α ∈ Rn. There

is a unique solution to this problem if and only if the

matrix
[
0 1T
1 QTQ

]
is non singular, i.e., if the points of Q are

affinely independent. Using results of [35] on the quadratic
minimization problem with linear constraint, the solution is
given by: α∗ = A−11

1T A−11 , so that y = Qα∗ and | |y | |2 = 1
2

1
1T A−11 .

Note that for any v := Qα such that 1Tα = 1 (i.e., in the affine
hull of S), we have vT y = αTQTQα∗ = 1

2
αT AA−11
1T A−11 = | |y | |

2.
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