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Distributed Learning in Noisy-Potential Games
for Resource Allocation in D2D Networks

M. Shabbir Ali, P. Coucheney, M. Coupechoux

Abstract—We propose a distributed learning algorithm for the resource allocation problem in Device-to-Device (D2D) wireless
networks that takes into account the throughput estimation noise. We first formulate a stochastic optimization problem with the
objective of maximizing the generalized alpha fair function of the network. In order to solve it distributively, we then define and use the
framework of noisy-potential games. In this context, we propose a distributed Binary Log-linear Learning Algorithm (BLLA) that
converges to a Nash Equilibrium of the resource allocation game, which is also an optimal resource allocation for the optimization
problem. A key enabler for the analysis of the convergence are the proposed rules for computation of resistance of trees of perturbed
Markov chains. The convergence of BLLA is proved for bounded and unbounded noise, with fixed and decreasing temperature
parameter. A sufficient number of estimation samples is also provided that guarantees the convergence to an optimal state. At last, we
assess the performance of BLLA by extensive simulations by considering both bounded and unbounded noise cases and we show that
BLLA achieves higher sum data rate compared to the state-of-the-art.

Index Terms—Distributed Learning, Potential Games, Resource Allocation, Power Control, Interference Management, D2D Networks.
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1 INTRODUCTION

Ever increasing demand for higher data rates of mobile
users and scarcity of wireless frequency spectrum is mak-
ing efficient utilization of spectrum resources increasingly
critical. Device-to-Device (D2D) networks increase the uti-
lization of the spectrum resources by providing spatial
spectrum reuse [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15]. D2D networks allow also cellular network
offloading, reduction of communication costs and transmit
powers among the devices and increased data rates for
users [4].

In a D2D network, cellular User Equipments (UEs) com-
municate on allocated radio resources with a Base Station
(BS) while the D2D UEs may reuse in an underlay manner
these resources with or without the limited help of the BS.
Although it increases cell capacity, channel reuse also creates
intra-cell interference that degrades the quality of service
(QoS) of the cellular UEs. Therefore, the Resource Alloca-
tion Problem (RAP) in underlay D2D networks consists in
assigning channels and power to UEs so that some objective
function balancing sum data rate and fairness is maximized
while maintaining low interference.

RAP in D2D networks is challenging due to the lack
of perfect Channel State Information (CSI) at the BS. The
estimated CSI of cellular UEs can be fed back to the BS but
the CSI of D2D links is difficult to obtain centrally in the
network without excessive control signaling. This CSI can
moreover be affected by noise so that resource allocation

• M. Shabbir Ali and M. Coupechoux are with LTCI, Telecom ParisTech,
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solutions, which ignore this effect may fail to achieve good
performance. The estimation noise can arise due to several
factors such as randomly varying channel gain, feedback
errors, feedback delay errors, and quantization errors [16].
Our goal in this paper is thus to design a low feedback
distributed solution to the RAP in D2D networks that takes
into account the CSI estimation noise and achieves optimal
resource allocation.

1.1 Literature Survey and Comparison
RAP in wireless networks is a standard problem and it is
known to be NP-hard [17]. An extensive survey of RAP for
underlay D2D networks can be found in [3]. State-of-the-art
solutions are based on dynamic programming [12], graph-
theoretical and heuristic solutions [13], [14], [15], based
on game theory [5], [6], [7], [8], [9], [10], [11], [18], using
linear programming (LP), non-linear programming (NLP),
and Markov Random Field [19]. Other generic approaches
include neural networks [20], simulated annealing [21], tabu
search and genetic algorithms [22]. In the follwoing, we
focus on approaches that are closely related to ours.

In [18], RAP is modeled as a Stackelberg game and a
distributed stochastic learning algorithm is presented. It is
proved that the proposed algorithm converges to a Nash
Equilibrium (NE). However, the obtained NE can be subop-
timal from a network-wide point of view.

In [12], the authors jointly optimize the mode selection
and channel assignment in a cellular network with un-
derlaying D2D communications in order to maximize the
weighted sum rate. A dynamic programming (DP) algo-
rithm is proposed but it is exponentially complex. Therefore,
a suboptimal greedy algorithm is proposed. However, this
approach relies on explicit closed form expressions of sum
data rate for different channel fading scenarios.

In [13], a greedy heuristic algorithm is presented that
uses the channel gain information of the links. The channel
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gains are sorted, cellular UEs are alloted channels with
highest gain, and D2D UEs are alloted channels with least
gains that causes least interference. The drawback of this
algorithm lies in the excessive control signaling required to
access the perfect CSI of all links.

In [14], a suboptimal graph-theoretical heuristic solution
is proposed. The weighted sum signal is maximized using
maximum-weighted bipartite matching and the sum inter-
ference is minimized using minimum-weighted partition-
ing. This approach is centralized since the BS uses the partial
CSI of all the UEs.

In [15], a heuristic algorithm is proposed for joint mode
selection, channel allocation and power allocation in a D2D
wireless network. The measured channel gains of the differ-
ent links is considered to be exact without noise. However,
measurement noise affects the link throughput.

Different game-theoretic models such as non-
cooperative games, coalition formation games, and auction
games have been used to study radio resource allocation
problems in D2D networks [5], [6], [7], [8], [9], [10], [11].
In [5], a game-theoretical reverse iterative combinatorial
auction is proposed as the allocation mechanism to optimize
the system sum rate over the resource sharing of both D2D
and cellular modes of the users. In this auction model, the
different channels compete for the D2D links. The auction
mechanism is known to be strategy proof but requires also
a huge overhead for the bid management.

In [7], a mechanism which is a pricing mechanism is
proposed to maximize the network throughput under QoS
constraint. The base stations transmit a pricing signal to
the D2D users. The price increases with the interference
from the D2D links. The D2D devices utilize the pricing
signal to update their strategies to maximize their data rates.
However, the algorithm proposed is a heuristic algorithm
whose performance is only evaluated through simulations.

In [8], the uplink resource allocation problem for multi-
ple D2D and cellular users is modeled as a coalition game.
The utility function combines different modes, mutual inter-
ferences, and resource sharing policy. Convergence to a NE
is proved, but it may be sub-optimal and inefficient.

Joint mode selection and spectrum sharing is modeled
as a coalition formation game in [9]. A coalition formation
algorithm is proposed that converges to a stable though
possibly non-optimal coalition. Authors of [10] has a similar
approach and evaluate the performance of their algorithm
only with simulations.

In [11], author propose a contract-based game theoretic
mechanism to incite users to truthfully report their channel
quality. Its performance is evaluated through simulations.

1.2 Contributions

A summary of our main contributions is as follows.
• Novel Approach: Our approach is to learn the optimal

resource allocation in a D2D wireless network using a
noisy-potential game that takes into account the estima-
tion noise of the data rate. To the best of our knowledge,
this is the first time that distributed learning in noisy
environments is considered for resource allocation in
D2D networks. We formulate a Stochastic Optimiza-
tion Problem (SOP) with the objective to maximize the

generalized alpha fairness function of the users under
the constraints of maximum transmit power and mini-
mum data rate. In order to solve the SOP distributedly,
we introduce the notion of noisy-potential game and
translate the problem into this framework. We propose
a distributed Binary Log-linear Learning Algorithm
(BLLA) to achieve a NE of the game, which is also an
optimal allocation of the SOP, hence an optimal NE.
In contrast, originally, log-linear learning was proposed
in [23] to achieve NE in potential games. We extend the
results to noisy-potential games and prove that BLLA
converges to an optimal NE. We apply the obtained
results to obtain the optimal resource allocation in D2D
networks.

• Rules for Resistance: The convergence of BLLA is ana-
lyzed using the resistance of trees of perturbed Markov
chains, where the resistance of an edge can be imagined
as a cost of playing a suboptimal action. We propose
new rules for the computation of resistances that are
the key enabler for the analysis of learning algorithms
in noisy-potential games.

• Convergence of BLLA in Presence of Bounded Noise: In this
case, we consider that utilities of the noisy-potential
game are corrupted by a bounded (finite support) noise
with any distribution. We first prove in Theorem 3
that if a single sample of noisy utility is used then
BLLA converges to the global maximum under a strict
constraint on the noise range. This extends the conver-
gence results of BLLA to near-potential games using
a different proof technique compared to [24]. Then to
relax the constraint on the noise range we prove in
Theorem 4 that a sufficient number of samples of the
noisy utility has to be used to converge to the global
maximum.

• Convergence of BLLA in Presence of Unbounded Noise: In
this case, we consider that utilities of the noisy-potential
game are corrupted by unbounded (infinite support)
noise with any distribution. In Theorem 5, we give the
sufficient number of samples of utilities required for
BLLA to converge to the global maximum. A special
case of Gaussian noise is presented in Corollary 2.

• Almost Sure Convergence with Decreasing Temperature: In
Theorem 6, for both bounded and unbounded noise
cases we prove the almost sure convergence of BLLA
to the global maximum by decreasing the tempera-
ture. In [25], the authors has proposed to use BLLA
in noisy-potential games and proved the convergence
with fixed temperature. In contrast, we extend the re-
sults by studying BLLA with both fixed and decreasing
temperature.

• Simulations Results: Extensive simulations show that
BLLA achieves the maximum of the objective function
in D2D networks under the constraints. We illustrate
the effect of bounded and unbounded noise and show
the robustness of BLLA in this uncertain environment.
We study the effect of various parameters on the per-
formance of the algorithm and show that BLLA outper-
forms one of the best known heuristic algorithm of the
state-of-the-art [13].

The rest of the paper is organized as follows. The system
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Fig. 1. D2D cellular network layout model.

model and problem formulation are described in Section 2.
The noisy-potential game framework and the proposed
learning algorithm are described in Section 3. Convergence
results of BLLA in various cases are given in Section 4. Sim-
ulation results and conclusions are presented in Sections 5
and 6, respectively. Proofs of convergence are in Appendix.

2 D2D CELLULAR NETWORK MODEL

In this section, we describe the D2D cellular network model
as shown in Fig. 1. This figure shows downlink (DL) and
uplink (UL) models.

2.1 System Model
We consider a cell served by a base station (BS)1; two types
of UEs: (i) cellular UEs (UECs) that communicate with the
BS and (ii) D2D UEs (UEDs) that communicate with other
UEDs. The set of UEs is denoted as D. We consider a set of
orthogonal radio resources or (to make things simple) fre-
quency channels C. A transmit power set P = {0, . . . , pmax

i }
is considered where pmax

i is the maximum power allowed
for UE i. The maximum transmit power of BS is denote as
pmax

BS . The UECs are assigned orthogonal channels by the
BS, whereas UEDs reuse these channels. We assume that a
UE transmits on a single channel. Let c̄ =

[
c1, . . . , c|D|

]
and

p̄ =
[
p1, . . . , p|D|

]
denote a channel allocation vector and a

power allocation vector, respectively. A UE i is allocated the
channel ci ∈ C and power pi ∈ P. The UEs that transmit
on the same channel cause interference that depends on the
channel gain.

2.2 Channel Model
We consider a channel model that captures the effect of
path-loss, shadowing, and small-scale fading. Formally, the
channel power gain g is given by [16]:

g = min
{

1,K |d|−η eβy~
}
, (1)

1. The proposed Algorithm can also be applied to a multiple cell
scenario as it requires only the estimated data rates at the base stations.
However, for simplicity we consider a single cell model in this paper.

where K =
(
λw

4πd0

)2
, λw is the wavelength, d0 is the

reference distance, d is the distance between the receiver
and the transmitter, η ≥ 2 is the path-loss exponent, eβy

is the shadow fading component, β = log 10
10 and y is a

Gaussian random variable of zero mean and σ2
sh variance.

The small scale fading component is ~. Thermal noise power
is denoted as P0.

The data rate of a UE i depends on vectors c̄ and p̄, and
is denoted as νi (c̄, p̄). Let denote D(c) as the set of UEs
transmitting on channel c ∈ C. The normalized data rate
νi (c̄, p̄) of UE i on channel ci is obtained using the classical
Shannon capacity formula:

νi (c̄, p̄) = log2

(
1 +

pigi∑
j∈D(ci)\i pjgj,i + P0

)
. (2)

where gi is the channel power gain between UE i and its
receiver, gj,i is the channel power gain between UEs i and
j. Rate estimation is done at the receiver and fed back to the
transmitter. Let the estimated rate be ν̂i (c̄, p̄), i.e., the rate
corrupted by the estimation noise.

2.3 Problem Formulation
We consider a generalized alpha fairness objective function
that allows for handling the trade-off between through-
put and fairness among the users of the network. Let
πi ≥ 0,∀i ∈ D denotes the weights that the scheduler
associate with users. These weights can be used to prioritize
different users; for example, cellular users can be given
higher priority. The generalized alpha fair objective function
is defined as:

φ̂α (c̄, p̄) =
∑
i∈D

πif̂α,i (c̄, p̄) , (3)

where f̂α,i (c̄, p̄) = fα,i (c̄, p̄) + ψi, where we assume that
the noise ψi that originates from the estimated data rate has
zero mean and finite variance, and fα,i is defined as:

fα,i (c̄, p̄) =

{
log νi (c̄, p̄) if α = 1,
ν1−α
i (c̄,p̄)

1−α , otherwise.
(4)

Let φα (c̄, p̄) = E
[
φ̂α (c̄, p̄)

]
be the expected value over all

the randomness. The problem of joint channel and power
allocation is formally stated as:

(c̄∗, p̄∗) ∈ arg max
c̄,p̄∈(C×P)|D|

φα (c̄, p̄) , (5)

s.t. 0 ≤ pi ≤ pmax
i , ∀i ∈ D (6)

νi (c̄, p̄) ≥ rmin
i , ∀i ∈ D. (7)

The alpha fair function is well studied in the literature [26]
because it captures various trade-offs between data rate
and fairness. When πi = 1 for all i, the solution of the
above problem indeed yields rate maximization for α = 0,
proportional fairness for α = 1, and max-min fairness as
α → ∞ [26]. The constraints considered above accounts
for the maximum power and minimum quality of service
of the users. Particularly, the constraint (6) ensures that the
maximum power is not above pmax

i . Note that each user can
have a different maximum power. Usually the D2D users
have lower maximum power so as to limit the interference
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at the cellular users. The constraint (7) ensures that the data
rate of user i is at least rmin

i and thus that its quality of
service is met.

We seek to maximize the average value of the alpha
fairness function by taking into account the estimation noise
of the data rates. Hence, the above problem is a SOP [27].
In the next sections, we develop a general solution for this
kind of problem. As we look for a distributed approach, we
rely on a game theoretical framework.

3 NOISY POTENTIAL GAME FRAMEWORK

In this section, we first reformulate the considered opti-
mization problem as a noisy-potential game and then we
describe a distributed learning algorithm that leads to an
optimal NE even in presence of noise.

3.1 Game Formulation
As UEs have only access to random estimations of their
throughput, the game we first consider is a stochastic game,
we call it a RAP game.
Definition 1. [RAP game] A RAP game is defined by the

tuple Ĝ :=

{
D, {Xi}i∈D ,

{
Ûi
}
i∈D

}
, where D is a set

of UEs that are the players of the game, {Xi}i∈D are
action sets, Ûi : X → R are utility functions, and X =
X1 ×X2 × . . . X|D|.

An action of a player i is a pair of channel ci and power
pi, i.e., ai = (ci, pi). An action profile is defined as a :=
(ai, a−i), where ai ∈ Xi is the action of player i, a−i ∈ X−i,
and X−i is the action set of all the players except player i.
The utility functions Ûi are stochastic as they are functions
of random variables.

NE is a classical solution concept for a game. In our
case however, a NE may be suboptimal with respect to the
SOP we are studying. Our goal is thus to find an optimal
NE, i.e., an NE that corresponds to a global maximizer of
the problem (5). Potential games are well suited for this
purpose provided that the potential function is aligned with
the objective function of the optimization problem. In poten-
tial games with finite action sets and deterministic utilities
indeed, an NE always exists and there exist algorithms that
are guaranteed to converge to a NE, which is also a global
maximizer of the potential function [28]. In order to take
into account the stochastic utilities of our RAP game, we
extend this framework to noisy-potential games.

3.2 Near and Noisy-Potential Games
Before defining noisy-potential games, we make a detour
through the notion of near-potential game that is required
for the proofs of convergence. Based on the notion in [24],
[29] a near-potential game is defined as below.
Definition 2. [ζ-potential game] A game G̃ :={
D, {Xi}i∈D , {Ui}i∈D

}
is a near-potential game or

a ζ-potential game if there is a potential function
Φ : X → R such that ∀i ∈ D, ∀ai, a′i ∈ Xi and
∀a−i ∈ X−i,

|Ui(ai, a−i)− Ui(a′i, a−i)− Φ(a′i, a−i)− Φ(ai, a−i)| ≤ ζ.
(8)

For ζ = 0, it is an exact potential game [28].

Note that the parameter ζ captures the maximum pairwise
difference (MPD) between an ζ-potential game and an exact
potential game with the same potential function as in [24,
Definition 2.2].
Definition 3. [Noisy-potential game] Let the expected utility

of player i be denoted as Ui = E
[
Ûi
]
. The game Ĝ :={

D, {Xi}i∈D ,
{
Ûi
}
i∈D

}
is a noisy-potential game if the

game G :=
{
D, {Xi}i∈D , {Ui}i∈D

}
is a potential game.

We now model the RAP game as a noisy potential
game with the potential function given in (3) by carefully
designing the utility functions. For that, we consider the
following utility functions, which represent the marginal
contributions of the players to the global objective function
φα (a):

Ûi(ai, a−i) =
∑

j∈D(ai)

πj f̂α,j(ai, a−i)

−
∑

k∈D(ai)\i

πkf̂α,k(a′i, a−i), (9)

where D(ai) = {j ∈ D : aj = ai} is the set of players using
the same channel as i. The additive noise component can be
separated as Ûi(ai, a−i) = E

[
Ûi(ai, a−i)

]
+ Zi, where the

noise component:

Zi =
∑

j∈D(ai)

πjψj −
∑

k∈D(ai)\i

πkψk (10)

is of zero mean and finite variance. In the case of unbounded
noise, we assume that the variance of Zi,∀i is σ2. In the case
of bounded noise, we assume that − `

2 ≤ Zi ≤
`
2 ,∀i.

Note that the utility Ûi may have a large variance leading
to a noisy potential game with a large deviation from the
exact potential game. To decrease the variance of the utility
we define a sample mean of the utility function:

ÛNi =
1

N

N∑
k=1

Ûi, (11)

Higher the value of N lower is the variance of the utility
ÛNi , while for practical reasons, a lower N is desired.
Proposition 1. The RAP game

ĜN :=

{
D, {Xi}i∈D ,

{
ÛNi

}
i∈D

}
is a noisy potential

game with potential function φα (a).

In the rest of the paper, we consider the noisy potential RAP
game ĜN .

3.3 Learning in Noisy-Potential Game
In this subsection, we describe the proposed binary log-
linear algorithm (BLLA) for learning in noisy-potential
games.

The details of BLLA are described in Algorithm 1 and
the steps involved are shown in Fig. 2. Time is divided in
time-slots, every slot is itself divided into two phases, and
each phase is made of N samples.
• Step 1: The algorithm starts with an action profile
a0 that consist of orthogonal channels for UECs and



5

Fig. 2. Time slots, phases, and steps of BLLA are shown in this figure.
Steps are represented using circles. During Step 5, measurements are
performed by the UEs during the two phases on the channels ci(t − 1)
and ĉi.

lowest allowable transmit power. The UEDs are not
allocated channels in the beginning. If power control is
not implemented then transmit powers are set to their
maximum. Then, Steps 2 to 8 repeat at every time-slot
t. Steps 1 to 4 are executed at the beginning of Phase
I, while steps 6 to 8 are executed at the end of Phase II
and step 5 is executed during the two phases.

• Step 2: The temperature parameter τ is set. It can
be fixed throughout the algorithm or be a decreasing
function of t. It governs the convergence properties of
the algorithm.

• Step 3: The BS randomly selects a player i and a trial
action âi ∈ Xi with uniform probability. This player
will potentially revise its strategy, while others keep
their strategies constant during the time-slot.

• Step 4: The BS asks all the players with actions ai(t−1)
and âi to estimate their data rate during the two phases
and feedback the results to the BS at the end of the slot.
This will be used to compute the marginal contribution
of i.

• Step 5: The player i plays action ai(t − 1) = (ci(t −
1), pi) and âi = (ĉ, p̂i) during Phase I and Phase II,
respectively. All players on channels ci(t − 1) and ĉi
sample their data rate during the two phases.

• Step 6: Let f̂kα,i be the kth sample of f̂α,i. At
the end of Phase II, all players j on ai(t − 1)
and âi send 1

N

∑N
k=1 f̂

k
α,i (ai(t− 1), a−i(t− 1)) and

1
N

∑N
k=1 f̂

k
α,i (âi, a−i(t− 1)) to the BS, respectively.

• Step 7: The BS calculates the utility of player i according
to (11) and selects an action from the set {ai(t− 1), âi}
according to (12). If one of the constraints is violated
during Phase II then the trial action is not selected.

• Stpe 8: The BS informs player i with the selected action.
This feedback requires only one bit.

Note that BLLA is distributed in nature because only a few
players have to feedback to the BS.

Algorithm 1 Binary Log-linear Learning Algorithm
1: [Step:1] Start with an arbitrary action profile a0.
2: while t ≥ 1 do
3: [Step:2] Set parameter τ(t).
4: [Step:3] BS randomly selects a player i and a trial

action âi ∈ Xi with uniform probability.
5: [Step:4] BS asks player i and all the players with

actions ai(t− 1) and âi to estimate their sample mean
data rates.

6: [Step:5] Player i plays action ai(t − 1) and âi during
Phase I and Phase II, respectively.

7: [Step:6] At the end of Phase II, all players j on ai(t−1)
and âi send 1

N

∑N
k=1 f̂

k
α,i (ai(t− 1), a−i(t− 1)) and

1
N

∑N
k=1 f̂

k
α,i (âi, a−i(t− 1)) to the BS, respectively.

8: if constraints (6) and (7) are satisfied for all players
with action âi then

9: [Step:7] BS calculates ÛNi (a(t− 1)),
ÛNi (âi, a−i(t− 1)), and selects action âi with
probability: (

1 + e∆N
i /τ

)−1
, (12)

where ∆N
i = ÛNi (a(t− 1))− ÛNi (âi, a−i(t− 1)).

10: end if
11: [Step:8] BS informs player i to play the selected action.

All the other players repeat their previous actions, i.e.,
a−i(t) = a−i(t− 1).

12: end while

4 CONVERGENCE OF THE LEARNING ALGORITHM

In this section, we present the results of convergence of
BLLA for both the cases of bounded and unbounded noise.
For τ 6= 0, BLLA generates an irreducible Markov chain
over the action space of the RAP game ĜN . As the parameter
τ goes to zero, the stationary distribution concentrates on
a few states whose limit probability is strictly positive.
These states are called stochastically stable. It is known that
for exact potential games the stochastically stable states of
BLLA are the maximizers of the potential function [30]. We
extend this result to noisy-potential games.

4.1 Preliminaries
We start with preliminaries and present rules required for
the analysis. The dynamics of BLLA can be analyzed using
the resistance of trees of a perturbed Markov chain. More
details on resistance trees of Markov chains can be found
in [30], [31]. A perturbed Markov process is characterized
by a set {P τ} of transition matrices over a state space X
indexed by a parameter τ , where τ ∈ (0, τh] is a parameter
that controls the perturbation and τh is a constant. P 0

ab and
P τab denote the transition probabilities from state a to b in the
unperturbed and the perturbed Markov chains, respectively.
The definition of resistance of transitions and the definition
of a regular perturbed Markov process are given below [31].
Definition 4 (Resistance of transition). A perturbed Markov

process {P τ} is regular if it satisfies the following con-
ditions [31]:

1. ∃τh : ∀τ ∈ (0, τh], P τ is aperiodic and irreducible,
2. limτ→0 P

τ
ab exists and is equal to P 0

ab,
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3. For each P τab strictly positive, there exists a non-negative
number Rab called the resistance of the transition such
that:

0 < lim
τ→0+

e
Rab
τ P τab <∞. (13)

Note that if P 0
ab > 0 then Rab = 0.

A tree, T , rooted at a state a, is a set of |X| − 1 directed
edges such that, from every other state a′ in the state space,
there is a unique directed path in the tree to a. The resistance
of the directed edge a → b is the resistance of P τab, hence
Rab. The resistance of a rooted tree, T , is the sum of the
resistances on its edges R(T ) =

∑
a,b∈T Rab. Let T (a) be

defined as the set of trees rooted at the state a. The stochastic
potential of the state a is defined as γ(a) = minT∈T (a)R(T ).

We now define a minimum resistance tree and the
stochastically stable states of a PMC [31].
Definition 5 (Minimum Resistance Tree). A minimum re-

sistance tree is a tree that has the minimum stochastic
potential, that is, any tree T that satisfies:

R(T ) = min
a∈X

γ(a). (14)

Definition 6 (Stochastically Stable State). Let {P τ} be a
regular perturbed Markov process, and for each τ > 0,
let µτ be the unique stationary distribution of P τ . A state
a is stochastically stable if:

lim
τ→0

µτ (a) > 0. (15)

Lemma 1 ( [31]). Let P τ be a regular perturbation of P 0 and
let µτ be its stationary distribution. Then limτ→0 µ

τ =
µ0 exists and µ0 is a stationary distribution of P 0.
Moreover, µ0

x > 0 if and only if γ(x) ≤ γ(y) for all
y ∈ X .

Due to Lemma 1, the stochastically stable states of BLLA are
the roots of the induced minimum resistance tree. Finding
the stochastically stable states thus requires the computation
of the resistance of trees. This computation is not easy in
general, we thus propose in the next section a new definition
of the resistance and computation rules that will be used for
the analysis of BLLA.

4.2 Resistance Computation Rules
The resistance in Definition 4 can be computed in case
the transition probability function can be factorised into
a simple function and in case the limit in (13) can be
evaluated. However, transition functions can be composite
and intricate and may not always be simplified. Moreover,
the limit in (13) cannot always be feasible to evaluate.
For example, when P τab = τ , the resistance does not exist
according to Definition 4. To overcome these limitations of
Definition 4 we first give a new generalized definition of
resistance that allows us to develop easy rules to compute
the resistance of any positive function.

Let o (.) and ω (.) denote little “o” order and little “ω”
order, respectively.
Definition 7. Let f and g be two functions of τ . Then

f(τ) ∈ o (g(τ)) if limτ→∞
f(τ)
g(τ) = 0.And f(τ) ∈ ω (g(τ))

if limτ→∞

∣∣∣ f(τ)
g(τ)

∣∣∣ =∞.

Definition 8 (Resistance of positive function). The resistance
of a strictly positive function f(τ) is Res(f) if there exists
a strictly positive function g(τ) such that g ∈ o

(
ek/τ

)
and g ∈ ω

(
e−k/τ

)
for any k > 0, and:

lim
τ→0

f(τ)

g(τ)e−
Res(f)
τ

= 1. (16)

Remark Note that Definition 8 includes Definition 4, in
which g(τ) = κ, 0 < κ < ∞ is a constant. Now, we can
evaluate the resistance of P τab = τ , i.e., Res(τ) = 0.

Remark Note that (16) is equivalent to

f(τ) = g(τ)e−
Res(f)
τ + h(τ), (17)

where h(τ) ∈ o
(
g(τ)e−

Res(f)
τ

)
.

Remark We call g(τ) as a sub-exponential function if g ∈
o
(
ek/τ

)
and g ∈ ω

(
e−k/τ

)
for any k > 0. Note that it

is equivalent to |log g| ∈ o
(

1
τ

)
.

Proposition 2. Let f, f1 and f2 be strictly positive functions.
Let Res(f1) and Res(f2) exist. Let κ be a positive con-
stant.

I f1(τ) is sub-exponential if and only if Res(f1) = 0. In
particular Res(κ) = 0.

II Res(e−κ/τ ) = κ.
III Res(f1 + f2) = min {Res(f1),Res(f2)}.
IV If Res(f1) < Res(f2) then Res(f1 − f2) = Res(f1).
V Res(f1f2) = Res(f1) + Res(f2).

VI Res( 1
f ) = −Res(f).

VII If ∀τ, f1(τ) ≤ f2(τ) then Res(f2) ≤ Res(f1).
VIII If ∀τ, f1(τ) ≤ f(τ) ≤ f2(τ) and if Res(f1) = Res(f2)

then Res(f) exists and Res(f) = Res(f1).

Proof: See proof in [2].

Remark In Rule IV, if Res(f1) = Res(f2) then we cannot
compute Res(f1 − f2) because in general the difference of
sub-exponential functions may not be a sub-exponential
function. For example, choose f1(τ) = 1 + e−k/τ and
f2(τ) = 1 with k > 0 then Res(f1) = Res(f2) = 0 but
Res(f1 − f2) = k.

Remark For Rule VIII, in general if f1(τ) ≤ f(τ) ≤ f2(τ)
and Res(f1) 6= Res(f2) then Res(f) may not exist. For exam-
ple, for f(τ) = λ(τ)f1+(1−λ(τ))f2, λ(τ) = 1

2

(
cos
(

1
τ

)
+ 1
)

Res(f) does not exist.

4.3 Main Results on Convergence of BLLA
4.3.1 Bounded Noise
Let φ∗ and φ† be the first and second global maxima of a
function φ.
Theorem 3. For a noisy-potential game Ĝ :={

D, {Xi}i∈D ,
{
Ûi
}
i∈D

}
with potential φ and with

bounded noise of interval size ` having finite support,
the stochastically stable states of BLLA have a potential
greater than φ∗ − 2` (|X| − 1).

Proof We first show that there exists a near-potential game
with MPD ` with the same maximum resistance as the noisy
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potential game Ĝ. Then the convergence result of BLLA in
noisy-potential game is same as in near-potential game [29,
Theorem 3]. See Appendix A for more details.

Corollary 1. For a noisy-potential game Ĝ :={
D, {Xi}i∈D ,

{
Ûi
}
i∈D

}
with potential φ the

stochastically stable states of BLLA have potential
φ∗ if:

` <
φ∗ − φ†

2(|X| − 1)
. (18)

The convergence of BLLA can be obtain by using multiple
samples of the noisy utilities, which is given in the below
theorem.
Theorem 4. For a noisy-potential game ĜN the stochastically

stable states of BLLA are the global maximizers of the
potential function φ(a) if the estimation noise is bounded
in an interval of size ` and the number of estimation
samples verifies:

N ≥ 2`2

(
log
(

4
ξ

)
+ 2

τ

)
(1− ξ)2

τ2
, (19)

where 0 < ξ < 1 is free parameter and can be chosen so
as to minimize the number of samples.

Proof: See Appendix C.

4.3.2 Unbounded Noise
Theorem 5. Let 0 < ξ < 1. Let the estimation noise

Z of the utility in (9) be unbounded with zero mean
and finite moment generating function M(θ). Let θ∗ =
arg maxθ θ (1− ξ) τ − log (M(θ)M(−θ)). For a noisy-
potential game ĜN the stochastically stable states of
BLLA are the global maximizers of the potential function
φ(a) if the number of samples verifies:

N ≥
log
(

4
ξ

)
+ 2

τ

log
(

eθ∗(1−ξ)τ

M(θ∗)M(−θ∗)

) . (20)

Proof: See Appendix D.
The corollary below immediately follows in case of

Gaussian noise distribution.
Corollary 2. Let the noise have Gaussian probability dis-

tribution with zero mean and σ2 variance. Then the
stochastically stable states of BLLA are the global maxi-
mizers of the potential function if:

N ≥ 4σ2
log
(

4
ξ

)
+ 2

τ

τ2 (1− ξ)2 . (21)

A small N is desired for practical implementations, we
thus choose the lowest N that satisfies Theorem 5 in simu-
lations. In Theorem 5, we have a convergence in probability
for a fixed parameter τ . In Theorem 6, we now consider the
case of a decreasing parameter τ for which we obtain an
almost sure convergence to an optimal state as in simulated
annealing with cooling schedule [32].
Theorem 6. Consider BLLA with a decreasing parameter

τ(t) = 1/ log(1 + t), and the number of samples N(τ)

TABLE 1
Simulation parameters.

Parameter Variable Value
Network radius L 200 m
Number of orthogonal channels |C| 5
Number of power values |P| 10
Number of UECs 5
Number of UEDs 15
Maximum transmit power of BS pmax

BS 46 dBm
Maximum transmit power of UE pmax

i 24 dBm
System bandwidth W 1 MHz
Additive noise power P0 −114 dBm
Path-loss exponent η 3.5
Shadowing standard deviation σsh 6 dB
Minimum rate constraint rmin 1 bps/Hz
Bounded noise range ` 5%, 10%
Gaussian noise standard deviation σ 5%, 10%
BLLA parameter τ 0.01
Parameter ζ 0.00001
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Fig. 3. Normalized sum data rate as a function of the number of BLLA
iterations when N = 1.

is given by Theorems 4 or 5. Then, BLLA converges
with probability 1 to a global maximizer of the potential
function.

Proof See Appendix E.

5 SIMULATIONS

In this Section, we present simulation results considering
standard wireless system parameters2 shown in Table 1. We
consider the downlink of a D2D network with a BS located
at the center of the region. UECs and UEDs are located
around the BS. The UED receivers are located around their
respective UED transmitters uniformly random over a disk
of radius 20 m.

5.1 Effect of Noise on the Convergence of BLLA
In Fig. 3, we show the normalized sum data rate of the
system (α = 0, πi = 1 ∀i) as a function of the number

2. In all the simulations we consider the noise range ` and Gaussian
noise variance σ2 are normalized with maximum potential function
value φmax. We fix the normalized values of ` and σ2 in percentage
and use the running maximum value of the potential function in the
simulations.
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Fig. 4. Objective function as a function of BLLA iterations for different
values of α in bounded noise ` = 5% and Gaussian noise σ = 5%.

of iterations of the learning algorithm and we illustrate the
result of Corollary 1. In this case, BLLA is run with a single
sample (N = 1). When the noise range ` does not satisfy the
condition of the Corollary (` = 5 or 10%), we observe large
fluctuations of the sum data rate. On the contrary, when `
satisfies condition (18), BLLA converges to a stable value.
As in practice the noise range cannot be controlled, this
highlights the necessity to work with multiple samples.

5.2 BLLA with Sufficient Number of Samples

Fig. 4 shows the convergence of BLLA in presence
of bounded noise Fig. 4a and unbounded Gaussian
noise Fig. 4b for different values of α. The number of
samples for bounded noise and Gaussian noise are set ac-
cording to Theorem 4 and 5, respectively. We see that BLLA
converges to the maximum values of φα for all different α
in both cases of noise.

We now compare the performance of BLLA with that of
the Algorithm presented in [13], which is a greedy heuristic
algorithm. This algorithm uses the channel gain information
of the links to allocate the channel to those UEDs that cause
least interference. Fig. 5 shows the performance comparison
of BLLA versus this heuristic algorithm for both bounded
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Fig. 5. Normalized sum data rate as a function of the number of BLLA
iterations and comparison with the heuristic proposed in [13], for which
full and exact channel information is assumed.
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Fig. 6. Normalized sum data rate as a function of the number of BLLA
iterations with and without power control.

and unbounded noise. Full and exact channel information is
assumed for the heuristic algorithm. On the contrary, BLLA
does not need full channel information and uses estimated
channel gain feedback from the users. It is clear BLLA
converges to the maximum normalized sum data rate of the
network for both bounded and unbounded noise, whereas
the heuristic algorithm converges to some suboptimal value.

5.3 Effect of Power Control

Fig. 6 shows the normalized sum data rate achieved by
BLLA with and without power control under bounded
noise and unbounded Gaussian noise. We see how higher
data rates are reached by allowing an additional degree of
freedom in the resource allocation. Interference is indeed
minimized by exploiting channel diversity and by power
allocation.
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Fig. 7. Normalized sum data rate as a function of the number of D2D
users (UED) with BLLA and the heuristic proposed in [13].

5.4 Effect of Varying the Number of UEs

We now study in Fig. 7 the effect of increasing the number
of UEDs on the sum data rate. We first remark that what-
ever the number of UEDs, BLLA outperforms the heuristic
proposed in [13]. Until approximately 50 UEDs, both BLLA
and the heuristic see their sum data rate increasing. This
is because the number of UEDs is small compared to the
number of channels and the addition of new UEDs increases
the channel usage without creating too much interference.
After 50 UEDs however, the heuristic is not anymore able
to optimally pack the UEDs in the available resources. The
amount of interference is then so large that the sum data
rate decreases and fluctuates around a low value according
to the specific locations of the new UEDs. On the contrary,
BLLA manages interference and resource allocation in such
a way that the sum data rate continues to grow until a
saturation point much higher than the heuristic.

5.5 Effect of Varying the Number of Channels

Fig. 8 shows sum data rate as a function of the number
of channels. We obtain a huge gain in sum data rate using
BLLA when compared to Zulhusnine heuristic, even though
the heuristic algorithm uses the perfect knowledge of the
channel state information. This is because BLLA better man-
ages the interference between the links given the number
of channels. As the number of channels increases the inter-
ference per channel decreases. The decrease in interference
per channel obtained by BLLA is much more than that of
Zulhusnine heuristic.

5.6 Effect of Power and Rate Constraints

In this section, we study the effect of different constraints
on the sum data rate. Note that a UED is not allocated a
channel if either of the constraints is not satisfied. Fig. 9
shows the influence of the UED maximum transmit power
pmax
i on the sum data rate. As we have assumed unbounded

rate function, BLLA benefits from the increase of the UED
power constraint and allows close-by UED transmitters and
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Fig. 8. Normalized sum data rate (α = 0) as a function of the number
of channels using BLLA and the heuristic proposed in [13]. The number
of UECs are 5 and UEDs are 95. For BLLA, bounded noise is assumed
with ` = 5%. For [13], full and exact channel information is assumed.
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Fig. 9. Normalized sum data rate as a function of the UED power
constraint with BLLA and Zulhasnine heuristic [13]. For BLLA, bounded
noise with ` = 5% is assumed. For the heuristic, full and exact channel
information is assumed.

receivers to communicate at a high data rate. The heuristic
follows this trend until a certain threshold but results af-
terwards in a much lower and fluctuating sum data rate.
This highlights the fact that the heuristic is less efficient
in managing high interference in the network. For lower
interference caused due to lower maximum power of UEDs
the heuristic gives approximately same data rate as BLLA.
This suggests that a simple heuristic works well in lower
interference and BLLA works well in both lower and higher
interference scenarios.

We now study the effect of the minimum rate constraint
rmin in Fig. 10. As the constraint increases, the sum data
rate decreases because less communications can be simul-
taneously sustained. Whatever the constraint, BLLA outper-
forms the heuristic. The difference is particularly large when
there is no constraint (rmin = 0) and decreases as the con-
straint increases. This is explained by the fact that there are
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Fig. 10. Normalized sum data rate as a function of the UED rate con-
straint with BLLA and and Zulhasnine heuristic [13]. For BLLA, bounded
noise with ` = 5% is assumed. For the heuristic, full and exact channel
information is assumed.

more transmissions and thus more interference when rmin is
small. As BLLA is more efficient in managing interference,
the difference between the two schemes increases.

6 CONCLUSIONS

In this paper, we have proposed a distributed learning
algorithm for resource allocation in D2D cellular networks
in presence of noisy estimates of the data rates. A stochastic
optimization problem is first formulated. Then, a noisy-
potential game framework is introduced to obtain a dis-
tributed solution and to capture the effect of noise. At last,
we have proposed a distributed Binary Log-linear Learn-
ing Algorithm (BLLA) that achieves the optimal resource
allocation, which is also an optimal Nash Equilibrium of the
game. Sufficient number of samples are given that guarantee
the convergence in case of bounded and unbounded noise.
Proofs are supported by a new definition of the resistance
of trees in perturbed Markov chains and new computa-
tion rules that can be used for any distributed learning
algorithms in games. Extensive simulations have shown
that BLLA outperforms the state-of-the-art in the field of
resource allocation for D2D networks.
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[14] S. Maghsudi and S. Stańczak, “Hybrid centralized–distributed
resource allocation for device-to-device communication underlay-
ing cellular networks,” IEEE Trans. Veh. Technol., vol. 65, no. 4,
pp. 2481–2495, 2016.

[15] C. Gao, X. Sheng, J. Tang, W. Zhang, S. Zou, and M. Guizani,
“Joint mode selection, channel allocation and power assignment
for green device-to-device communications,” in Proc. ICC, pp. 178–
183, 2014.

[16] A. Goldsmith, Wireless communications. Cambridge university
press, 2005.

[17] M. R. Garey and D. S. Johnson, Computers and intractability, vol. 29.
wh freeman New York, 2002.

[18] S. Dominic and L. Jacob, “Distributed resource allocation for d2d
communications underlaying cellular networks in time-varying
environment,” IEEE Communications Letters, vol. 22, pp. 388–391,
Feb 2018.

[19] E. Ahmed, A. Gani, S. Abolfazli, L. J. Yao, and S. U. Khan, “Chan-
nel assignment algorithms in cognitive radio networks: Taxonomy,
open issues, and challenges,” IEEE Commun. Surveys & Tutorials,
vol. 18, no. 1, pp. 795–823, 2016.

[20] P. T. Chan, M. Palaniswami, and D. Everitt, “Neural network-
based dynamic channel assignment for cellular mobile commu-
nication systems,” IEEE Trans. Veh. Technol., vol. 43, no. 2, pp. 279–
288, 1994.

[21] M. Duque-Antón, D. Kunz, and B. Rüber, “Channel assignment
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APPENDIX A
PROOF OF THEOREM 3

Consider a noisy-potential game Ĝ :={
D, {Xi}i∈D ,

{
Ûi
}
i∈D

}
and the corresponding exact

potential game G :=
{
D, {Xi}i∈D , {Ui}i∈D

}
, where

E
[
Ûi
]

= Ui,∀i. Utilities Ûi given in (9) with bounded
noise Zi of range ` with finite support have probability
distribution in the range Ui − l

2 ≤ Ûi ≤ Ui + l
2 . Let

∆̂i = Ûi(a)− Ûi(b) and ∆i = Ui(a)− Ui(b). Then, we have

∆i − ` ≤ ∆̂i ≤ ∆i − `. (22)

Recall that ∆̂i has finite support. Let {d1, . . . , dn} be a set of
values that ∆̂i can take. Let mi > 0, denote the probability
of choosing player i to revise its action. The transition
probability P τab of BLLA in noisy-potential game Ĝ is

P τab =
mi

|Xi|
E
[(

1 + e∆̂i/τ
)−1

]
, (23)

P τab =
mi

|Xi|

n∑
k=1

((
1 + edk/τ

)−1
Pr
(

∆̂i = dk
))

. (24)

Using the proposed rules, we can calculate the resistance as
follows.

Res (P τab)

= Res
(
mi

|Xi|

)
+ min

dk

{
Res

[(
1 + edk/τ

)−1
Pr
(

∆̂i = dk
)]}

,

(25)

= min
dk

{
Res

[(
1 + edk/τ

)−1
]

+ Res
[
Pr
(

∆̂i = dk
)]}

+ Res
(
mi

|Xi|

)
, (26)

= min
dk

{
Res

((
1 + edk/τ

)−1
)}

, (27)

= min
dk

{
−Res

(
1 + edk/τ

)}
, (28)

= min
dk

(
−min

{
Res (1) ,Res

(
edk/τ

)})
, (29)

= min
dk

(−min {0,−dk}) , (30)

= min
dk

(max {0, dk}) . (31)

where (25) is obtained by using Rule III and V, (26)
is by Rule V, (27) is by using Res

(
mi
|Xi|

)
= 0

and Res
(

Pr
(

∆̂i = dk
))

= 0, (28) is by Rule VI,
(29) is by Rule III, (30) is by Rule I and II. Since
mindk (max {0, dk}) ≥ max {0,∆i − `} ≥ max {0,∆i} −
` and mindk (max {0, dk}) ≤ max {0,∆i + `} ≤
max {0,∆i}+ `. Therefore, we have

|Res (P τab)−max {0,∆i}| ≤ `, (32)

which is the same resistance of BLLA in an `-potential
game [29]. Then the convergence proof of BLLA in noisy-
potential game follows from the proof of [29, Theorem 3].

APPENDIX B
PROOF OF CONVERGENCE OF BLLA WITH FIXED τ

Our proof approach is to show that for a particular number
of samples the resistance BLLA with estimated utilities is
same as that of with the deterministic utilities3. This proof
idea have often been used in the literature [25], [31].

We first compute the resistance of BLLA in a determin-
istic potential game using the proposed rules. Then, show
that the resistance of BLLA in noisy-potential game is same
as that of the exact potential game if a particular number
of samples are used. Let consider the exact potential RAP
game G :=

{
D, {Xi}i∈D , {Ui}i∈D

}
, with expected utilities

Ui = E
[
ÛNi

]
. BLLA induces a regular Markov process over

the action space X of G [25], [29], [30]. Let denote P τ as the
transition matrix of the regular Markov process.

Let mi denote the probability of choosing player i to re-
vise its action. In case of deterministic utilities, the transition
probability P τab of BLLA is

P τab = mi
e

1
τ Ui(b)

e
1
τ Ui(a) + e

1
τ Ui(b)

. (33)

Let ∆i = Ui(a)− Ui(b).
Using Lemma 2, we have

Res(P τab)

= Res (mi) + Res

(
e

1
τ Ui(b)

e
1
τ Ui(a) + e

1
τ Ui(b)

)
, (34)

= Res
(
e

1
τ Ui(b)

)
−min

{
Res

(
e

1
τ Ui(a)

)
,Res

(
e

1
τ Ui(b)

)}
(35)

= ∆+
i , (36)

where ∆+
i = max {0,∆i}.

In the following, we show that the resistance of BLLA for
the noisy-potential CAP game ĜN with estimated utilities
ÛNi is same as in (35). For this, we need the following
lemma.

Lemma 2. Let denote ∆N
i = ÛNi (a)− ÛNi (b), ∆i = Ui(a)−

Ui(b),

pNi = E
[(

1 + e∆N
i /τ

)−1
]
, (37)

pi =
(

1 + e∆i/τ
)−1

, (38)

and consider the event Aδ =
{∣∣∆N

i −∆i

∣∣ < δ
}

. Then∣∣∣pNi − pi∣∣∣ ≤ δτ−1pi + 2Pr
(
Āδ
)
. (39)

Proof: Notice that the probability of transition of
BLLA from action a to b in noisy-potential game ĜN is
pNi = PrN (a→ b) given in (37) and in deterministic po-
tential game is pi = Pr (a→ b) given in (38). Using the law
of total probability, we can write

pNi = PrN
(
a→ b

Aδ)Pr
(
Aδ
)

+PrN
(
a→ b

Āδ)Pr
(
Āδ
)
,

(40)

3. In all the proofs, the considered utilities are normalized by the
maximum potential φmax.



13∣∣∣pNi − pi∣∣∣ ≤ ∣∣∣ PrN
(
a→ b

Aδ)− pi∣∣∣Pr
(
Aδ
)

+
∣∣∣ PrN

(
a→ b

Āδ)− pi∣∣∣Pr
(
Āδ
)
. (41)

It can be shown that the absolute value of the derivative of
pi with respect to ∆i is τ−1pi (1− pi) ≤ τ−1pi. Therefore,
we have ∣∣∣ PrN

(
a→ b

Aδ)− pi∣∣∣ ≤ δτ−1pi. (42)

Also, we bound
∣∣∣ PrN

(
a→ b

Āδ)− pi∣∣∣ ≤ 2. Substituting,
this and (42) in (41) we have (39).

APPENDIX C
PROOF OF THEOREM 4

Proof: We have ∆N
i − ∆i =

1
N

∑N
k=1

(
Ûi(a)− Ui(a)−

(
Ûi(b)− Ui(b)

))
=

1
N

∑N
k=1 (Zi(a)− Zi(b)). Since, the noise components

Zi(a), Zi(b) have the range ` their sum Zi(a) − Zi(b) has
range 2`. We can use Hoefding inequality for bounded
independent random variables as below

Pr
(
Āδ
)

= Pr

(
1

N

N∑
i=1

|Zi(a)− Zi(b)| > δ

)
≤ 2 exp

(
−N δ2

2`2

)
.

(43)
Substituting (43) in Lemma 2, we have

pi

(
1− δ

τ

)
− 4e−N

δ2

2`2 ≤ pNi ≤ pi
(

1 +
δ

τ

)
+ 4e−N

δ2

2`2 .

(44)
Substituting the number of samples N from (19) and δ =
(1− ξ) τ in above, we have

ξ
(
pi − e−

2
τ

)
≤ pNi ≤ (2− ξ) pi + ξe−

2
τ . (45)

As before, the transition probability P τab of BLLA is

ξmi

(
pi − e−

2
τ

)
≤ P τab ≤ (2− ξ)mipi + ξmie

− 2
τ . (46)

In the following, we calculate the resistance of lower and
upper bound of the above P τab using Lemma 2. Note that
Res(pi) = ∆+

i , Res(e−
2
τ ) = 2, and ∆i ≤ 2. The resistance of

lower bound of P τab is

Res
(
ξmi

(
pi − e−

2
τ

))
= Res (ξmi) + Res

((
pi − e−

2
τ

))
, (47)

= min
{

Res (pi) ,Res
(
e−

2
τ

)}
, (48)

= Res(pi). (49)

Similarly, the resistance of upper bound of P τab is

Res
(

(2− ξ)mipi + ξmie
− 2
τ

)
= min

{
Res ((2− ξ)mipi) ,Res

(
ξmie

− 2
τ

)}
, (50)

= min
{

Res (pi) ,Res
(
e−

2
τ

)}
, (51)

= Res(pi). (52)

Since both the bounds have the same resistance, by Rule VIII
the resistance of P τab exists and is equal to Res(pi). Therefore,
the resistance of transitions of BLLA with bounded noise is
same as in the case of without noise (35).

APPENDIX D
PROOF OF THEOREM 5

Proof: In this case, we use Chernoff bound to calculate
Pr
(
Āδ
)

because of the unbounded noise as below. We have
∆N
i −∆i = 1

N

∑N
k=1

(
Ûi(a)− Ui(a)−

(
Ûi(b)− Ui(b)

))
=

1
N

∑N
k=1 (Zi(a)− Zi(b)). Since, in this case the noise com-

ponents Zi(a), Zi(b) are independent and having the mo-
ment generating function M(θ).

Pr
(
Āδ
)

= Pr

(
1

N

N∑
i=1

|Zi(a)− Zi(b)| > δ

)
, (53)

= 2Pr

(
1

N

N∑
i=1

(Zi(a)− Zi(b)) > δ

)
, (54)

≤ 2 exp

(
−N log

(
eθ
∗δ

M(θ∗)M(−θ∗)

))
, (55)

where, (53) is obtained by assuming symmetric probability
distribution of noise. However, for non-symmetric distribu-
tion a more complex expression can be obtained. Also, we
used the Chernoff bound for independent and identically
distributed random variables to obtain the equation (55).

Substituting (55), δ = (1− ξ) τ , and N from (20) in
Lemma 2, we have

ξpi − 4ξe−
2
τ ≤ pNi ≤ (2− ξ) pi + 4ξe−

2
τ . (56)

Following the same steps as before, we get that the
resistance of transitions of BLLA with unbounded noise is
same as in the case of without noise (35).

APPENDIX E
PROOF OF CONVERGENCE OF BLLA WITH DE-
CREASING τ(t)

We follow the proof approach as in [33] by Anily and
Federgruen. The Theorem 1 in [33] cannot be used directly
since our TPF does not belong to the class of asymptoti-
cally monotone function (CAM) or rationally closed class of
bounded variation (RCBV) functions (see [33, Def. 3 and 4]).
We give the proof in the case of bounded noise. The proof
for unbounded noise can be done similarly.

Proof of Theorem 6:
We check that the assumptions of Theorem 1 in [33] are

satisfied for the proof of Theorem 6. In Lemma 5, we prove
that BLLA generates a weakly ergodic non-homogeneous
Markov chain. In Lemma 6, we show that the stationary
distribution π(τ) of the homogeneous Markov chain is a
bounded variation function of τ .

We now give the Lemmas required for the above proof in
the following. To simplify the notations we omit to specify
the index of player i and particular transition when not
needed. For a given parameter τ , we set N(τ) as in (19), and
we consider p(τ) = pN(τ). Recall that p(τ) = E

[
f(∆N , τ)

]
with f(d, τ) =

(
1 + exp

(
d
τ

))−1
. We denote δ = E

[
∆N

]
.

Lemma 3. For a given τ , function
∂f(d, τ)

∂τ
is odd, has the

sign of d, is bounded in absolute value by k/τ for some
k > 0, and the maximum is attained (for positive value)
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at the point a∗τ , where a∗ > 0 and it is independent of
τ .

Proof We have the function

∂f(d, τ)

∂τ
=

d

τ2

1

2 + exp(d/τ) + exp(−d/τ)
. (57)

This is an odd function in d that has the sign of d. Hence,
we just consider the case d > 0. Then

∂2f(d, τ)

∂d∂τ
=

1

τ2(2 + Y + Y −1)2

[
1− d

τ

Y − Y −1

2 + Y + Y −1

]
,

with Y = exp(d/τ). This is first positive and then negative
when d is positive. The maximum is reached when

d

τ

Y − Y −1

2 + Y + Y −1
= 1. (58)

We claim that the maximum in d is attained for d∗ = a∗τ ,
with a∗ > 0 a constant. Indeed, consider d = aτ with a > 0
in (58), which gives

2 + exp(a)(1− a) + exp(−a)(1 + a) = 0.

Consider the function g(a) = 2+exp(a)(1−a)+exp(−a)(1+
a). We have g(0) = 4, and g tends to−∞when a goes to∞.
Furthermore, the derivative is −a(exp(a)+exp(−a)) which
is strictly negative, hence there is a unique solution a∗ to the
equation (58). Replacing d by d∗ = a∗τ in (57) yields:

∂f(d∗, τ)

∂τ
=
a∗

τ

1

2 + exp(a∗) + exp(−a∗)
.

Hence the result follows with k =
a∗

2 + exp(a∗) + exp(−a∗)
.

Lemma 4. If δ > 0 (resp. δ < 0), then p(τ) is increasing
(resp. decreasing) in the vicinity of τ = 0. Furthermore,
|p′(τ)| has resistance |δ|.

Proof We consider δ > 0. The case δ < 0 is similar.
We will show that the derivative p′(τ) is positive in the

vicinity of 0. Previous lemma shows that
∂f(d, τ)

∂τ
≤ k/τ .

Since the constant function k/τ is integrable w.r.t. to the
distribution of ∆N , then

p′(τ) = E
[
∂f(∆N , τ)

∂τ

]
. (59)

By previous lemma, the point reaching the maximum of
∂f(d, τ)

∂τ
is a∗τ , then it goes to zero when τ goes to zero, and

the function is then decreasing. Hence, for any ε < δ, there
is τ small enough such that the minimum (resp. maximum)
of the derivative on the interval [δ − ε, δ + ε] is attained at
δ + ε (resp. δ − ε). Consider the event

Aε =
{∣∣∣∆N − δ

∣∣∣ < ε
}
. (60)

In the following, we proof the Lemma by bound the p′(τ).

p′(τ) = E
[
∂f(∆N , τ)

∂τ

]
, (61)

= E
[
∂f(∆N , τ)

∂τ
|Āε
]
P[Āε] + E

[
∂f(∆N , τ)

∂τ
|Aε
]
P[Aε],

(62)

≥ −k
τ
P[Āε] +

∂f(δ + ε, τ)

∂τ
P[Aε], (63)

≥ −kξ
τ

exp(−2

τ
) + 0.5

∂f(δ + (1− ξ)τ, τ)

∂τ
. (64)

In the above (63) is obtained by using Lemma 3 and (64)
is obtained by choosing ε = (1 − ξ)τ and N is given by
Theorem 4 or Theorem 5. The resistance of the first term
Res

(
−kξτ exp(− 2

τ )
)

= 2 and resistance of second term

Res
(

0.5∂f(δ+(1−ξ)τ,τ)
∂τ

)
= δ < 2. Therefore, the first term

is negligible compared to the second term. Hence the lower
bound is positive for small enough τ and the resistance of
lower bound on p′(τ) is δ. Hence the derivative is lower
bounded by a positive function and then is positive.

The upper bound is obtained with the following inequal-
ity:

p′(τ) = E
[
∂f(∆N , τ)

∂τ
|Āε
]
P[Āε] + E

[
∂f(∆N , τ)

∂τ
|Aε
]
P[Aε],

≤ k

τ
P[Āε] +

∂f(δ − ε, τ)

∂τ
P[Aε],

≤ kξ

τ
exp(−2

τ
) + 0.5

∂f(δ − (1− ξ)τ, τ)

∂τ
.

This upper bound has the resistance δ. Therefore, from
Rule VIII we have that the resistance of p′(τ) is δ.

Lemma 5. The non-homogeneous Markov chain gener-
ated by the BLLA algorithm with decreasing parameter
τ(t) = 1

log(1+t) is weakly ergodic.

Proof The conditions of validity of Theorem 2 in [34] are
checked by Lemma 4, Equation (56) and the classical choice
of decreasing parameter τ . More details about weak ergod-
icity can also be found in [35].

If a real valued function f is defined on the interval [a, b],
f is differentiable and its derivative f ′ is Riemann integrable
then its total variation V ba (f) is

V ba (f) =

∫ b

a
|f ′(x)| dx. (65)

f is a bounded variation function if its total variation is finite
i.e., V ba (f) <∞. In particular, if the derivative f ′ is bounded
then V ba (f) <∞ and f is a bounded variation function.

Let π(τ) be the stationary distribution of the homoge-
neous Markov chain for a given τ .

Lemma 6. π(τ) has a bounded derivative.

Proof By the Markov chain tree theorem [36] for every state
c ∈ X , we have πc(τ) = u(c)∑

d∈X u(d) where

uc(τ) =
∑
T∈Tc

∏
e∈T

pe(τ), (66)
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pe(τ) (37) is the transition probability to a state e and Tc is
the set of trees rooted at the state c. Then

|π′c(τ)| =
∣∣∣∣∣
(

uc∑
d ud

)′∣∣∣∣∣ ≤ |u′c|(
∑
d ud)

(
∑
d ud)

2
+
uc |
∑
d u
′
d|

(
∑
d ud)

2
,

≤ |u′c|∑
d ud

+
|
∑
d u
′
d|∑

d ud
≤ |u′c|∑

d ud
+
∑
d

|u′d|∑
d′ ud′

.

Hence it suffices to show that
|u′c|∑
d ud

is bounded for all

states c.
Let Res (T ) denotes the total resistance of a tree T and

Rmin denotes the resistance of the minimal resistance tree.
By using Proposition 2, we obtain

Res

(∑
d

ud(τ)

)
= Res

∑
d

∑
T∈Td

∏
e∈T

pe(τ)

 , (67)

= min
d∈X

min
T∈Td

Res

(∏
e∈T

pe(τ)

)
, (68)

= min
d∈X,T∈Td

Res (T ) = Rmin. (69)

The derivative of transition probability u′c(τ) is obtained
using (66) as

u′c(τ) =
∑
T∈Tc

∑
e∈T

p′e(τ)
∏

d∈T/e

pd(τ). (70)

The resistance of u′c(τ) is

Res (u′c) = min
T∈Tc

min
e∈T

Res (p′e) +
∑
d∈T/e

Res (pd(τ))

 . (71)

By Lemma 4, Res (p′e) is |δ|. If δ > 0 then Res (pe) = δ,
otherwise Res (pe) = 0, which corresponds to the best
response transition. Hence, Res (p′e) ≥ Res (pe) and Res (p′e)
is strictly greater than Res (pe) if δ < 0. In Lemma 7,
we prove that the minimal resistance tree must contain
a transition with null resistance (which corresponds to
the best response). Hence, the state c at which Rmin is
reached contains at least one transition with δ ≤ 0.
Therefore, Res (u′c) > Rmin. Using Proposition 2, we have
Res

(
|u′c|∑
d ud

)
= Res (u′c|) − Rmin > 0. Hence, |u′c|∑

d ud
→ 0

as τ goes to zero for all states c. This finally shows that the
derivative |π′c(τ)| is bounded.

Lemma 7. A minimum resistance tree must contain a transi-
tion with zero resistance.

Proof Assume that a minimum resistance tree Tmin have
all the transitions with non-zero resistance. Let the root
of this tree be a state s and let there be a transition from
another state s′ to s. Let Rs′→s be a non-zero resistance of
this transition. Note that the resistance of reverse transition
Rs→s′ = 0 because it corresponds to the best response
transition. Construct a new tree T rooted at state s′ by
adding the transition s → s′ and removing the transition
s′ → s. The resistance of the tree T is

RT = RTmin −Rs′→s +Rs→s′ < RTmin . (72)

We arrive at a contradiction. Therefore, a minimum resis-
tance tree must contain a transition with null resistance.


