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1. Introduction

The concept of "Internet of Things" refers to the massive deployment of sensors
in our daily life as well as in various economic sectors such as autonomous vehicles,
robotics, agriculture, etc. These sensors, unless powered by a renewable energy, are
equipped with batteries with several years of lifetime. They can be controlled by a
central unit through a wireless communication protocol.

In this project, we study an application of the Internet of Things, which consists
in deploying sensors to detect the intrusion of an animal or a human through a
strip (or rectangular) area. This type of deployment has applications in wildlife
monitoring or security. Every sensor has a sensing range, within which the presence
of a moving object is detected. As the detection may fail, we require a robust
deployment by adding some redundancy. We say that a set of sensors provides a
robust K-barrier coverage if any intrusion can be detected by at least K sensors
(see Figure 1).
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Figure 1. Sensor deployment over a strip area providing a K = 2
barrier coverage.

As the sensor lifetime is not infinite, we would like also to activate or desactivate
sensors in order to save energy. Our objective is thus to find for a given sensor
deployment, a given set of remaining lifetimes and a given K, a schedule of the
sensors so that the network provides a K-barrier coverage at every instant and so
that the network lifetime is maximized.

This subject as well as test files are available on this page:
https://marceaucoupechoux.wp.imt.fr/enseignement/english-inf421-pi/

Date: 26 Nov. 2018.
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2. Preliminaries

In this project, Γ = (W,F, c) is an undirected graph with node capacities, and
G = (V,E,w) and G′ = (V ′, E′, w′) are directed graphs with edge capacities. A
sensor network is a tuple (N , R, c), where N is the set of sensors, R is the sensing
range of the sensors, and c(u) ∈ N∗ is the remaining lifetime of sensor u ∈ N . A
sensor can be activated (it switches from a OFF to a ON state) or desactivated
(from ON to OFF). If a sensor is ON during n units of time, its remaining lifetime
is decreased by n.

An instance of the K barrier coverage problem is a tuple (N , R, c,K,A), where
A = [0, Xmax]× [0, Ymax] is the protected strip area.

From a sensor network (N , R, c,A), we construct a coverage graph Γ = (W,F, c)
as follows. The set W consists of one vertex per sensor node and two additional
vertices s and t at the boundary of the area. There is an edge in F between two
vertices corresponding to two sensors if their distance is less than 2R. Additionally,
there is an edge between a vertex corresponding to a sensor with s (resp. t) if its
distance to the left (resp. right) boundary is less than R. Every node u has a
capacity c(u) and we set c(s) = c(t) =∞.

Solving the K barrier coverage problem of the sensor network is equivalent to
find a schedule of the nodes such that at any instant there areK node-disjoint paths
from s to t in the coverage graph and such that the network lifetime is maximized.

Let now consider a directed graph G = (V,E,w), where V is the set of vertices,
E is the set of edges and w : E 7→ N is a capacity function with integral values. Let
s, t ∈ V be respectively a source and a sink.

Definition 1 (s-t flow). An s-t flow in G is a mapping f : E 7→ R+ such that:
• ∀u ∈ V − {s, t},

∑
v∈V f(v, u) =

∑
v∈E f(u, v)

• ∀u, v ∈ V , 0 ≤ f(u, v) ≤ w(u, v)

The value of the s-t flow is defined as: |f | =
∑

v∈V f(s, v)−
∑

v∈V f(v, s).

Let U = max{w(u, v);u, v ∈ V } be the maximum capacity of any edge in G.
The maximum-flow problem consists in sending the maximum flow from s to t
while meeting the capacity constraints on every edge and the flow conservation
constraints at every vertex except s and t. Let ν∗ be the maximum s-t flow value.

Definition 2 (Elementary K-flow). An elementary K-flow is a flow of one unit
along K edge-disjoint paths from s to t.

Definition 3 (K-route flow). A K-route flow is any flow from s to t that can be
expressed as a nonnegative linear sum of elementary K-flows. The value of a K-
route flow is equal to the total amount of flow entering the sink node t. The value
of a K-flow is the associated nonnegative factor in the sum.

Definition 4 (K-route flow problem). For a directed graph G = (V,E,w) with
integral edge capacities, a source s ∈ V , a sink t ∈ V , the K-route flow problem
consists in finding the maximum s-t flow which can be decomposed into a nonneg-
ative linear sum of elementary K-flows.

Figure 2 shows an example of directed graph G (a), a K-route flow of value ν = 8
with K = 2 (c), and its decomposition into two K-flows of respective values 1 and
3 (d-e).
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Figure 2. A directed graph G, a maximum K-route flow and its
decomposition in elementary K-flows.

Assume now that each directed edge e of E has a demand d(e) ≤ w(e). We
require from a flow f to satisfy d(e) ≤ f(e) ≤ w(e) at every edge. Finding a
feasible flow can be obtained as follows. Construct a new graph G′ = (V ′, E′, w′)
from G by adding a new source s′ and a new target t′ and defining the new capacity
function as:

• ∀v ∈ V , w′(s′, v) =
∑

u∈V d(u, v) and w′(v, t′) =
∑

u∈V d(v, u)
• For each edge (u, v) ∈ E, w′(u, v) = w(u, v)− d(u, v).
• w′(t, s) =∞.

Lemma 1. For any saturating s′-t′-flow f ′ : E′ 7→ R of G′, f = f ′|E + d is a
feasible s-t-flow of G.

3. Homogeneous Lifetimes

In this section, we assume that the lifetime of every sensor is 1 (∀u ∈ N , c(u) =
1). Let M be the maximum number of node-disjoint paths between s and t. In the
following, we assume that K ≤M .

3.1. Maximum Number of Node-Disjoint Paths. We have the following re-
sult, for which we omit the proof.

Lemma 2 (Upper Bound). The maximum time for which the sensor network can
provide K-barrier coverage is at most M/K.

Question 1. Write the pseudo-code and implement an algorithm that takes as
input a sensor network (N , R, c,A) with unit lifetimes and outputsM node-disjoint
paths from s to t.

Question 2. What is the complexity of your algorithm?

3.2. Scheduling. A scheduling of the network is a set of time intervals [t0, t1],
[t1, t2],...,[tn−1, tn], where t0 = 0 and tn is the network lifetime, and a set of sched-
uling functions hu(t) ∈ {0, 1} for every sensor u ∈ N constant on every interval



4 MARCEAU COUPECHOUX

[ti, ti+1]. Fig. 3 gives an example of scheduling of four paths providing a K = 2 bar-
rier coverage. We want to schedule the sensors so that the sensor network lifetime
is maximized.
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Figure 3. Example of scheduling of four paths providing a K = 2
barrier coverage (all sensors of a path have the same schedule),
network lifetime is 4.

Question 3. Given M and K, propose a scheduling of the sensors that ensures
the K-barrier coverage and maximizes the network lifetime.

3.3. Numerical Application. The file "sensornetwork0.txt" provides an exam-
ple of sensor network with homogeneous lifetimes. Its format is the following: n
(number of sensors), K, Xmax, Ymax, R, all x-coordinates of the n sensors, all
y-coordinates of the n sensors, c for every sensor.

Question 4. Give for this network the list of node-disjoint paths in Γ, the network
lifetime and show the schedule in a convenient way. Provide the CPU time for
solving the problem.

4. Heterogeneous Lifetimes

In this section, we assume that nodes may have integral heterogeneous lifetimes
(∀u ∈ N , c(u) ∈ N∗). We first determine the maximum K-route flow, then decom-
pose it into elementary K-flows and at last compute the sensor scheduling.

4.1. Maximum K-Route Flow. Let F (p) be the maximum flow value from s to
t in the network Gp = (V,E,wp) where all edges capacities in G are replaced by
wp(u, v) = min{p, w(u, v)}. Figure 2 (b) shows Gp for p = 4 for the graph G shown
in (a). Here are some results, for which we omit the proof.

Theorem 1. Let Ψ(p) = F (p)−Kp. Then, the maximum value of a K-route flow
is M , maxp≥0{F (p) : Ψ(p) ≥ 0}.

Lemma 3. (i) The function Ψ(p) is concave and piecewise linear. (ii) Each break-
point is a multiple of 1/r for some integer r ∈ {1, ..., |E|}. The distance between
two successive breakpoints in Ψ(p) is at least 1/|E|2.
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Question 5. Using these results, write the pseudo-code an implement an algorithm
that takes as inputs a directed graph G = (V,E,w) and an integer K and outputs
a maximum K-route flow and its value.

Question 6. What is the complexity of your algorithm?

4.2. Decomposition of a K-Route Flow. We now look for the decomposition
of the K-route flow into elementary K-flows.

Question 7. For a directed graph G = (V,E,w) with edge demands d, implement
an algorithm that outputs a feasible flow.

Question 8. Propose a modification of the residual network and of the Edmond-
Karp algorithm that starts from a feasible flow and find a maximum s-t flow in a
directed graph G = (V,E,w) with edge demands d.

Lemma 4. Suppose that f is a feasible flow from s to t in G = (V,E,w) with
value Kν and satisfying 0 ≤ f(u, v) ≤ ν, ∀u, v ∈ V and K ∈ N. Then, there exists
an elementary K-flow g such that g(u, v) = 0 if f(u, v) = 0 and g(u, v) = 1 if
f(u, v) = ν.

Proof. Consider the maximum flow problem obtained by replacing the capacity on
edge (u, v) by w′(u, v) = df(u, v)/νe and imposing a lower bound (or edge demand)
of l′(u, v) = bf(u, v)/νc. Then, the flow f/ν is feasible for the maximum flow
problem and has a flow of K units. The flow f/ν may not be integral; however by
the integrality of the capacities and demands, there exists an integral flow g of the
same value. Since the flow to the sink isK units, and the flow in each arc is 0 or 1, it
follows that g is an elementary K-flow. Moreover, g(u, v) = l′(u, v) = w′(u, v) = 0
when f(u, v) = 0 and g(u, v) = l′(u, v) = w′(u, v) = 1 when f(u, v) = ν. �

Lemma 5. Suppose that f is a feasible flow in G from s to t, and the flow into the
sink t is Kν for some integer K. Suppose further that 0 ≤ f(u, v) ≤ ν, ∀u, v ∈ V .
Then, f is a K-route flow.

Proof. If ν = 0 the result is trivially true. Assume now that ν > 0. We say that
the edge (u, v) is intermediate if 0 < f(u, v) < ν. We prove the result by induction
on the number of intermediate edges. If this number is 0, then select a flow g as
in Lemma 4. We have g(u, v) = 1 whenever f(u, v) = ν, so that f = ν · g and
the lemma is true. Assume now that the number of intermediate edges is k > 0
and that the lemma is true for k − 1 or less intermediate edges. Let g be the
elementary K-flow as defined in Lemma 4. Let ∆1 = min{ν−f(u, v) : g(u, v) = 0},
∆2 = min{f(u, v) : g(u, v) = 1}, and ∆ = min{∆1,∆2}. Let f ′ = f − ∆g and
ν′ = ν − ∆. By Lemma 4, ∆ > 0 and 0 ≤ f ′(u, v) ≤ ν′ for all edges (u, v) ∈ E.
Moreover, the flow into the sink is K(ν − ∆) = Kν′ and so f ′ and ν′ satisfy the
assumptions of Lemma 5. We now claim that the number of intermediate edges in
f ′ is strictly less than in f . To see this, note that:

• If f(u, v) = ν, then f ′(u, v) = ν −∆ = ν′.
• If f(u, v) = 0, then f ′(u, v) = 0.

We conclude that each edge that is not intermediate with f is also not intermediate
with f ′. If ∆ = ∆1 and ∆1 = ν − f(u, v) for some (u, v) ∈ E. In this case,
f ′(u, v) = f(u, v) = ν−∆ = ν′ and (u, v) is no longer intermediate. If ∆ = ∆2 and
∆2 = f(u, v) for some (u, v) ∈ E. In this case, f ′(u, v) = 0 and (u, v) is no longer
intermediate. �
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Question 9. Using Lemmas 4 and 5, write the pseudo-code and implement an
algorithm that takes as inputs a directed graph G = (V,E,w), an integer K and
a K-route flow f , and outputs its decomposition in elementary K-flows with their
respective value.

Question 10. What is the complexity of your algorithm?

4.3. Scheduling.

Question 11. Write the pseudo-code of an algorithm that takes as inputs an
instance of the K barrier coverage problem (N , R, c,K,A) and outputs the set of
node-disjoint paths with their respective scheduling and the network lifetime.

4.4. Numerical Application. The file "sensornetwork1.txt" provides an example
of sensor network with heterogeneous lifetimes. Its format is the following: n
(number of sensors), K, Xmax, Ymax, R, all x-coordinates of the n sensors, all
y-coordinates of the n sensors, c for every sensor.

Question 12. Give for this network the list of node-disjoint paths in Γ, their value,
the network lifetime and show the schedule in a convenient way. Provide the CPU
time for solving the problem.
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