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Abstract—This paper develops a model evaluating the impact
of mobility in heterogeneous wireless networks by the way of
analytical expressions of the spatio-temporal evolution of QoS
indicators. Such formulas are obtained by introducing a multi-
user averaged mobility pattern named density of users. Among
the set of densities, we use a Gaussian form of this quantity, which
results from a modeling method based on the maximum entropy
principle. Numerical results show the temporal variations of the
QoS indicators and highlight the combined effects of network
heterogeneity due to the presence of macro and small cells, and
traffic variations due to mobility.

Index Terms—heterogeneous networks, small cells, mobility,
performance, quality of service, load and capacity analysis

I. INTRODUCTION

The recent and massive commercial release of wireless
network connected advanced terminals and associated applica-
tions has changed users way of consuming network services.
Customers did not only increase their data traffic and modify
their usage, but have also increased their expectations in terms
of Quality of Service (QoS) in mobility. This has led Mobile
Network Operators (MNOs) to define new network planning
strategies, such as the deployment of heterogeneous wireless
networks. MNOs evaluate network performance by the way of
QoS indicators (such as load, capacity, blocking probability),
which can be derived using for example the processor sharing
queue assumption with or without admission control [2]. These
indicators are commonly derived in static configurations (fixed
base stations and users) and temporal variations are usually
introduced by the way of a user redistribution in the network
following probabilistic or deterministic mobility patterns.

Authors of [4][5] analyzed the LTE wireless network het-
erogeneity and proposed a model evaluating the impact on
coverage and throughput, showing that QoS criteria can be
satisfied with reduced emitted power by the way of a spatial
redeployment of stations or densification. The effect of mo-
bility on α-fair scheduling policies is evaluated in [3]. In [7],
authors assess the problem of mobility in a micro-cell network,
each cell being divided in pico-cells. User traffic demands and
mobility are defined by a triplet of the form (location of arrival,
size file requirement, user velocity), each component being
probabilistically distributed. They obtain expressions for some
characteristic times, optimal cell sizes and maximum velocities
satisfying criteria leading to a successful communication. Au-
thors of [9] model mobility in an heterogeneous network (WiFi
and HSDPA cells) using migration rates following Markov

Modulated Poisson Process. Using the optimal policy of the
association problem, authors show that mobility improves
performance under certain assumptions.

One should also mention the huge work on mobility mod-
eling in the literature around ad hoc networks. To have an
overview of the field one can refer to the survey by Camp
and al. [14] on the mobility models commonly used in
simulations of ad-hoc networks. They mainly distinguish two
kinds of models, the first type being entity mobility models
such as random walk, random way point, Gauss-Markov or
city section models and the second one being group mobility
models such as exponential correlated, nomadic community or
pursue mobility models. Authors of [13] evaluate the optimal
placement and the optimal number of nodes in massively dense
ad-hoc mobile sensor networks. This assumption leading them
to describe the nodes distribution with spatial densities.

In this paper, we jointly consider mobility, network het-
erogeneity and user traffic, and we introduce a multiple-user
mobility pattern based on a dynamic Gaussian user density.
Such a quantity allows us to use a deterministic expression
of the user spatial distribution with underlying probabilistic
mobility patterns. We develop an analytical model leading
to simple formulas of the spatio-temporal evolution of QoS
indicators. By the way of numerical evaluations, we highlight
the impact in time and space of both mobility and network
heterogeneity on performance.

Section II introduces the system model, particularly the
heterogeneous network model (II-A) in terms of its sub-
networks, the mobility model (II-B) consisting in a Gaussian
density based mobility pattern and the propagation model
(II-C) leading to a simple Signal to Noise plus Interference
Ratio (SINR) form (II-D). Section III defines the cell-type
dependent indicators (loads, maximum throughputs, capacity)
formulas. Section IV presents numerical results and gives an
interpretation (IV-B) of the temporal evolution of the QoS
indicators. Section V concludes the paper.

II. SYSTEM MODEL

A. Network Model

We consider a finite set M of omni-directional macro-cell
base stations (MBSs) deployed on a hexagonal network made
of several rings surrounding a central cell (see figure 1). Let Rc
be the half-distance between two neighboring MBSs, ρm the
MBS density and Pm their common transmit power. In each
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Fig. 1. Heterogeneous network obtained by the superposition of a macro-cell
base stations network and a small-cell base stations network.

macro-cell, n small-cell base stations (SBSs) are deployed
with a regular pattern. Let N be the set of all SBSs of the
network. Let Rn be the average half-distance between two
neighboring SBSs1, ρn the SBS density and Pn their common
transmit power. The superposition of the MBSs and SBSs
networks results in an heterogeneous network. The coverage
area of each BS is defined as the set of locations, where
users are served by this station. An heterogeneous cell is made
of one MBS and all the SBSs deployed in its hexagon. We
define the coverage area of an heterogeneous cell as the set
of locations, where users are served by the MBS or any of
the SBS of the concerned heterogeneous cell. We focus our
analysis on the downlink.

B. Mobility Model

In any real system, the user spatial distribution at a given in-
stant can be seen as the realization of a random point process.
The temporal evolution of this distribution follows however
hardly identifiable mobility patterns. The group behavior of
these users may be such that, in average, the number of users
per unit surface is given by a density npr, tq (users{m2).
Such a quantity is commonly used in physics, where systems
may be described at microscopic scale (atoms, molecules)
or at a larger scale while considering fluid particles whose
properties result from the statistical averaging of microscopic
behaviors. In this paper, we focus on this larger scale and
thus do not specify any individual mobility scheme, such as
random way point, random-walk or Gauss-Markov model. In
other words, we consider a quantity resulting from individual
mobility patterns but at a larger scale than the user point
process. With this approach, we can use deterministic formulas
resulting from underlying probabilistic processes. Depending
on the scenarios, many forms of densities may be used.

In this paper, we will concentrate on a Gaussian density
of users. With this model, the user density npr, tq has the
following form:

npr, tq “ A expp´
pr ´ µptqq2

2σ2
q, (1)

where r “ pr, θq is a position vector in polar coordinates, A
and σ are constants and µptq is a function of time.

A mathematical argument for this choice is provided in
Appendix. It uses the maximum entropy principle that allows

1In the sense of Voronoi cells.

Fig. 2. Spatio-temporal diffusion of the Gaussian density of users in the
plane. Left is at t=0s and right at t=300s.

to derive the user distribution that maximizes uncertainty,
when only the mean and the variance of the radial mobility
pattern are known. In addition, it is interesting to focus on
such a Gaussian density due to its symmetry property and the
convenience it induces in terms of interpretations. Another
qualitative argument in favor of this kind of density can be
provided by the way of the following example. When going
out of a subway entrance, users diffuse in the plane. It seems
reasonable to consider in this case an average pedestrian speed
of diffusion and an isotropic radial diffusion.

To give more intuition on the model, we consider here a
kind of user ”wave” spreading isotropically in a given area
(figure 2). In such a case, the density goes through the cell at
a velocity given by the temporal evolution of its mean µptq.
The spatial extension of the distribution of users is given by
the parameter σ. The total amount of users in a given area is
obtained by spatial integration of the density. The previously
mentioned symmetric diffusion in every angular direction of
the plane allows us to locate those users of the distribution
who generate a non-negligible proportion of the load. Most of
the users concentrate around the mean (roughly in the interval
rµ´3σ;µ`3σs) and the spatial extension allows to catch the
spreading trend. The slowest users locate at the back of the
wave and the fastest ones locate at the front of the wave. Both
cases are however less probable than the heights of the wave.

C. Propagation Model

We assume that the path-gain gjpuq between a station j
transmitting at power Pj and a user u only depends on the
distance rjpuq between j and u. The power, Pj,u, received by
a mobile u from j can be written:

Pj,u “ PjKjr
´ηj
j puq (2)

where Kj and ηj denote the path-loss propagation coefficients
of station j. We assume constant coefficients for all stations of
the same type2: Kj “ Km, ηj “ ηm @j PM and Kj “ Kn,
ηj “ ηn @j P N .

Let define Cprq as the peak data rate practically obtained in
r in the absence of any other user in the cell [2]. The analytical

2For the sake of simplicity and because we focus on the mobility effect,
we ignore in this paper shadowing. We will take it into account in a future
work.
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expression of this peak rate has been obtained at Orange Labs
by simulations of the LTE RF chain and consists in a simple
fitting of obtained curves by a modified Shannon’s formula [1]
of the form:

Cprq “ aWlog2p1` bγprqq (3)

where a “ 0.6, b “ 1 and γprq is the Signal to Interference
plus Noise Ratio (SINR) in r. The dependency of the system
performance on the environment and on user mobility is taken
into account by their impact on the SINR, which is detailed
in the next section.

D. SINR

We assume that every user u is attached to its best server,
i.e., the station providing the highest received signal power, u
is thus served by j if and only if3:

Pjgjpuq ě Pigipuq @i PMYN . (4)

Let now define k˚u PM and l˚u P N the closest MBS and SBS
respectively to u. We can rewrite the previous association rule
as follows. BS j is serving u is given by:

j “ k˚ if Pk˚gk˚puq ě Pl˚gl˚puq, (5)

j “ l˚ if Pk˚gk˚puq ď Pl˚gl˚puq, (6)

where we have removed the u subscript in k˚u and l˚u for a
reason of simplicity. Finally, we can write the worst-case SINR
(all stations interfering except the serving station) as:

γpuq “
PmKmr

´ηm
k˚ 1tj“k˚u ` PnKnr

´ηn
l˚ 1tj“l˚u

IN puq ` IM puq `Nth
(7)

where:

IN puq “
ÿ

lPN ztl˚u

KnPnr
´ηn
l ` PnKnr

´ηn
l˚ 1tj“k˚u (8)

IM puq “
ÿ

kPMztk˚u

KmPmr
´ηm
k ` PmKmr

´ηm
k˚ 1tj“l˚u,

(9)

and Nth is the thermal noise power. In numerical implementa-
tions presented in section IV use the fluid model [6] to simplify
the calculations of (8) and (9). We now derive in the next
section the QoS indicators of the heterogeneous network.

III. PERFORMANCES

Let dSprq be an elementary surface located at r “ pr, θq.
The total number of users in dSprq at t is given by:

npdSprq, tq “ npr, tq ˆ dS (10)

We assume that the traffic demand is independently and
identically distributed (i.i.d) among users and arrives as a
Poison process of intensity λu. Flows sizes are i.i.d and given
by the random variable σf . We define the traffic density as
the average number of bits per unit of time and surface:

ρpr, tq “ npr, tqλuErσf s bits{s{m2 (11)

3Indetermination is solved at random.

The traffic intensity generated by users in a surface dSpr, tq
at t is given by:

dρdSpr, tq “ npdSprq, tqλuErσf s bits{s (12)

A. Cell load

Based on [2], we define the total load generated by a domain
Dr “ Dθ ˆDR served by a unique station:

ρDr
ptq “

ż

DθˆDR

dρdSpr, tq

Cprq
“ λuErσf s

ż

Dθ

ż

DR

npr, tq

Cprq
dr

(13)
Introducing (3) in (13), we obtain a general formula giving the
instantaneous load of a bi-dimensional domain Dr with users
density npr, tq:

ρDr
ptq “

λuErσf s
aW

ż

Dθ

ż

DR

npr, tq

log2p1` bγprqq
dr (14)

We now detail this load formula (14) for SBSs and MBSs.
1) Small-cell load: Let Dl “ Dθl ˆDRl be the coverage

area of SBSl. In a polar coordinate system centered on SBSl,
we define the angular and radial domain such that:

Dθl “ r0; 2πs DRlpθq “ rRN0 ; rmaxpθqs, (15)

where RN0
denotes the minimal distance between users and

a SBS (red circles in figure 1). The extremum rmaxpθq of the
radial domain is the solution of (6), i.e., the maximum distance
such that in the angular direction θ, the power received by any
user from SBSl is greater than the power received from MBS
k˚. Assuming equality of the path-loss coefficients (ηm “

ηn “ η), we obtain a simple analytical expression of rmaxpθq:

rmax,lpθq “
rk˚lrcospθ ´ θk˚lq ´

a

cos2pθ ´ θk˚lq ´As

A
(16)

with A “ p1´p PnKnPmKm
q´η{2q and prk˚l, θk˚lq the coordinates

of MBS k˚ in the polar coordinate system centered on SBSl.
We can thus write the load generated by users in the coverage
area of SBSl:

ρlptq “
λuErσf s
aW

ż 2π

θ“0

ż rmax,lpθq

r“RN0

npr, tq

log2p1` bγprqq
rdrdθ

(17)
2) Macro-cell load: We now focus on the load ρkptq

generated by the area covered by a macro-cell base station
MBS k. To simplify its calculation, we subtract from the total
load ρmk generated by the hexagon cell, the load ρml associated
to the area covered by every SBS of the heterogeneous cell.
We thus obtain the following formula:

ρkptq “ ρmk ptq ´
n´1
ÿ

l“0

ρml ptq (18)

The load ρmk involves a numerical integration over a convex set
(the hexagon), while loads ρml involve numerical integrations
similar to (17), i.e., over convex sets. The serving area of a
MBS is a priori non-convex. On the contrary, the right hand
side of (18) involves only numerical integrations over convex
areas, which makes easier the load computation.
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B. Cell capacity

Capacity may admit many definitions. We consider the one
given in [2]. It is defined as the maximum average value of
total traffic in bits/s (reached at the limit of overload, i.e.,
when load tends to 1). We have previously defined the demand
of an area as the one resulting from the activity of users
distributed according to a spatial density. Thus, we first define
the maximum throughput per user of a MBS or a SBS as
the maximum average value of individual traffic (bits/s/user)
knowing that the service is uniformly distributed among all
users. In case of heterogeneous cells, we define the capacity
as the maximum total average traffic (bits/s), still knowing that
the service is uniformly distributed among all users.

1) Small-cell maximum throughput: The maximum
throughput per user served by SBSl is given by:

Qpl, tq “ sup
ρlă1

λuErσf s

“ aW

˜

ż 2π

θ“0

ż rmax,lpθq

r“RN0

npr, tq

log2p1` bγprqq
rdrdθ

¸´1

(19)

2) Macro-cell maximum throughput: The maximum
throughput per user served by MBS k is given by:

Qpk, tq “ sup
ρkă1

λuErσf s

“ aW

ˆ
ż 2π

θ“0

ż Re

r“RM0

npr, tq

log2p1` bγprqq
rdrdθ

´

n´1
ÿ

l“0

ż 2π

θ“0

ż rmax,lpθq

RN0

npr, tq

log2p1` bγprqq
rdrdθ

˙´1

(20)

with RM0 the minimal distance between users and any MBS
and Re the radius of the disk equivalent in surface to the
hexagonal coverage of the macro-cell.

3) Heterogeneous-cell capacity: Finally, we define the ca-
pacity of an heterogeneous macro-cell as the total number of
bits per unit of time that the system is able to transmit to users
it is serving. This quantity is obtained by adding all individual
maximum throughput:

Chpk, tq “ nkptq ˆQpk, tq `
n´1
ÿ

l“0

nlptq ˆQpl, tq (21)

where nkptq denotes the total number of users served by MBS
k, nlptq denotes the total number of users served by SBS l
(lth small-cell station contained in the hexagon of MBS k).
Equations (17), (18), (19), (20) and (21) allow us to quickly
compute the loads and capacities in a heterogeneous network.

IV. SCENARIO AND RESULTS

In this section we present the numerical results obtained
from the previous analytical approach. Our aim is to show the
impact of mobility (due to the spatio-temporal evolution of the
density of users) on QoS indicators such as loads or capacity.

−2000 −1500 −1000 −500 0 500 1000 1500 2000

−1500

−1000

−500

0

500

1000

1500

Fig. 3. Network of heterogeneous cells. Macro-stations are identified by
the symbol d, small-cell stations by `. The first ring around each ` gives
the minimal distance to small-cells. Each small-cell coverage area (given by
equation (16)) is in dotted lines.

A. Assumptions

We consider a scenario with two SBSs per heterogeneous
cell. The half distance Rc between two MBSs is 866 m and
the distance Rr between any SBS and the MBS at the center
of its heterogeneous cell is 500 m. The minimum distance
RM0 to a MBS is 50 m and the minimum distance RN0 to
a SBS is 30 m. The MBS transmitting power Pm is 43 dBm
and the SBS transmitting power Pn is 28 dBm. The path-loss
parameter η is 3.41. The signal bandwidth W “ 10 MHz.
There are Ntot “ 30 users initially introduced in every macro-
cell and their individual average traffic intensity λuErσf s is
100 kbits/s.

The network layout is shown on figure 3. All hexagon cells
are identical in terms of SBS deployment, we thus focus on
the central cell for numerical experimentations.

We propose a Gaussian density of users with mean µptq “
RM0

`3σ`vt, normalized at any instant to Ntot. The density
goes through the cell in time at velocity v “ 1 m{s (average
speed of a pedestrian). Changing the average pedestrian speed
v would only induce changes in the time-scales of the temporal
variations of the indicators shown in this section (others such
as failures if considered may behave differently). The model
remains valid for any other density as long as it can be written
in the form npr, tq. If the expressions in the paper are analyt-
ically tractable then the temporal evolutions are obtained, if
not they can be evaluated by numerical computations.

B. Results and Interpretation

1) Load of a small-cell: Figure 4 shows the time variations
of a SBS load. These variations are due to the dispersion
of users in the plane via the diffusion of their density. We
particularly observe a sudden jump at time t “ 230 s,
which corresponds to the first arrival of a user in the small
cell coverage area. Then, we can observe the user ”wave”
traversing the small cell: the loads reaches a global maximum
at t “ 560 s before decreasing to zeros when the last user
leaves the serving area.

Interestingly, we observe a local maximum if the load
around t “ 300 s. This is due to the fact that after this time
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Fig. 4. Temporal evolution of the load of a small-cell.

Fig. 5. Evolution of the load density in a small-cell coverage area (whithe
circle is the SBS location). Left is at t=300s and right at t=520s. Dark shades
indicate low values and bright shades indicate higher ones.

instant, the peak number of users served by the SBS is reached
and these users start to be in average closer to the base station.
They thus tend to obtain higher physical data rates and create
less load on the small cell. As the maximum of the wave
starts going farther from the base station, data rates decrease
and the load increases again. At t “ 560 s, this effect starts
to be compensated by the fact that more and more users are
leaving the serving area. Figure 5 illustrates this phenomenon
by showing the SBS load density at two time instants.

2) Load of a macro-cell: Recall that users diffuse from the
central MBS towards the cell edge. This means that the SINR
of a user going away from its initial serving MBS decreases
due to the weakening of its useful signal (path-loss effect)
and the growing interferences. This explains the fact that the
macro-cell load is first increasing (see figure 6). At t “ 230 s,
the load is a bit stabilizing (at least increases with a lower
slope). At this time instant, SBSs are indeed starting serving
users, alleviating some load from the MBS. From 470 s to
720 s, we observe again a high load increase. This effect being
due to both users going back from small-cell to macro-cell
coverage area and the global mobility towards the cell edge.
At t “ 720 s, small cells do not serve any user and users start
leaving the macro-cell coverage area.

3) Capacity of an heterogeneous-cell: The capacity varia-
tions observed on figure 7 result from the users weighted sum
(21) of the temporal evolutions of the maximum throughputs
of each serving cell (20) (19). These individual variations are
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Fig. 6. Temporal evolution of the load of a macro-cell.
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Fig. 7. Temporal evolution of the capacity of an heterogeneous cell.

obtained by inversion of the previously analyzed load varia-
tions. The gain in the heterogeneous-cell capacity obtained as
a result of the introduction of small-cells is significant. When
SBSs start serving (t “ 230 s), we observe an increase of 92%
in capacity, rising from 18.6 Mbits/s to 35.7 Mbits/s. Similarly,
when the service of SBSs stops (t “ 620 s), the capacity of
the heterogeneous cell decreases of 62% from 1.61 Mbits/s to
0.61 Mbits/s.

V. CONCLUSION

In this paper, we developed an analytical model to study
the impact of mobility on QoS in heterogeneous wireless net-
works. We introduced a multi-user averaged mobility pattern
by the way of a quantity named ”density of users”. To illustrate
this notion, we have chosen a dynamic Gaussian form. We
established simple expressions of the temporal evolution of
performance indicators such as load, maximum throughputs
or capacity. Numerical results showed this evolution and we
gave an interpretation of their variations based on the known
dynamic of the Gaussian density of users. We noticed the
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stabilization of the load of a macro-cell and the significant
increase of the capacity of an heterogeneous cell, both induced
by the entrance of users in the coverage area of small-cells.
Future work may include other forms of user densities and
take into account more complex propagation models such as
shadowing and fast-fading.

APPENDIX

We propose hereafter a proof justifying the Gaussian form
of the density of users we use in the proposed model. This
proof includes a modeling method using the maximum entropy
principle; see [10], [11], [12] and references therein. Basically,
we are looking for the mobility model we are legitimately able
to assume when only knowing the mean and variance of the
radial mobility pattern of users.

We define r, the matrix containing at row i the two random
polar coordinates pri, θiq of user i among Ntot users and P prq
the joint probability distribution of the random components of
matrix r. Let consider the following assumptions:

@i,

ż

dr r2i P prq “ σ2
ri “ σ2 and

ż

drP prq “ 1 (22)

We are looking for the probability distribution of the coor-
dinates of users maximizing uncertainty. Thus, we define the
Lagrangian LpP q such that:

LpP q “ ´

ż

drP prqlogpP prqq `
ÿ

i

γipσ
2 ´

ż

drr2i P prqq

` βp1´

ż

drP prqq

(23)

Taking the functional derivative of LpP q with respect to P :

δLpP q

δP
“ 0 ô ´1´ logpP prqq ´

ÿ

i

γir
2
i ´ β “ 0 (24)

We obtain the following form for the distribution:

P prq “
ź

i

P pri, θiq (25)

with:
P pri, θiq “ e´pγir

2
i`

β`1
Ntot

q (26)

Using (22), we evaluate the Lagrange multipliers:

e´pβ`1q “
1

p2πσ2q
Ntot

2 πNtot
and @i, γi “

1

2σ2
(27)

Finally, we have:

@i, P pri, θiq “
1

?
2πσ2

1

π
e´

r2i
2σ2 (28)

Now assuming the knowledge of the mean of each radial
component Erris “ µi “ µ and its variance Erpri´µq2s “ σ2,
we obtain (using the same method) the following spatial
distribution for the coordinates of user i:

@i, P pri, θiq “
1

?
2πσ2

1

π
e´

pri´µq
2

2σ2 (29)

Let define the average number of users in an elementary
surface dSprq (section III) as:

NpdSprqq “
ÿ

k

k ˆ P pk users in dSprqq (30)

This probability of having k users (among Ntot) in dSprq
being given by the following binomial distribution:

P pk users in dSprqq “
ˆ

Ntot
k

˙

pkp1´ pqNtot´k (31)

with p the probability of a user being in dSprq:

p “ P pr, θq ˆ dSprq “
1

?
2πσ2

1

π
e´

pri´µq
2

2σ2 ˆ dSprq (32)

Knowing the mean of a random variable following a binomial
distribution, we obtain:

NpdSprqq “ Ntot ˆ p “ Ntot
1

?
2πσ2

1

π
e´

pr´µq2

2σ2 ˆ dSprq

(33)
Defining the density of users as the average number of users
per unit area (users{m2), we finally have the Gaussian form
of the expected density of section II-B:

nprq “ Ntot
1

?
2πσ2

1

π
exp´

pr´µq2

2σ2 (34)
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