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Motivation

Figure: 5G Network requirements

Some Key Network Technologies

1. Ultra dense small cell networks

2. Device-to-device networks

3. Sensor networks

Some Classical Questions

1. Resource allocation?

2. Load balancing?

3. Coverage maximization?

Solution Approaches

1. Centralized approaches

2. Distributed learning
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Distributed Learning in Games for Wireless Networks

Figure: Small cell networks

• Game: Interactions can be mod-
eled as a game

• Players: Base stations and
users

• Strategies: Parameters
• Cost/Utility: Related to
data rate, load, ..

• Nash Equilibrium (NE):
No player gains by deviating

• Distributed Learning: Players
learn from their actions to reach
the optimal NE
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Outline of Presentation

1. Potential Games (PG)

2. Distributed learning in near-potential game

3. Distributed learning in noisy-potential game

4. Application 1: Load balancing in small cell networks

5. Application 2: Channel assignment in D2D networks
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Potential Games

Game and Nash Equilibrium

Definition (Game)

A finite game G =
{
S, {Xi}i∈S , {Ui}i∈S

}
, where S is a set of players,

X = X1 × X2 × . . .× X|S| is action sets and Ui : X →R is a cost or (utility) function. An
action profile is denoted as x = (xi , x−i ).

Definition (ε−Nash Equilibrium)

An action profile
(
x∗i , x

∗
−i

)
∈ X is an ε-NE if

Ui (x
∗
i , x
∗
−i )− Ui (xi , x

∗
−i ) ≤ ε, ∀i ∈ S, xi ∈ Xi . (1)

If ε = 0 then it is a Pure NE (PNE).
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Potential Games

Potential Games

Definition (Potential games)

Consider a G if there is a potential function Φ : X →R such that ∀i ∈ S, ∀xi , x ′i ∈ Xi and
∀x−i ∈ X−i the below condition is true then the game is exact-PG if

Ui (xi , x−i )− Ui (x
′
i , x−i ) = Φ(xi , x−i )− Φ(x ′i , x−i ), (2)

the game is near-PG if∣∣Ui (xi , x−i )− Ui (x
′
i , x−i ) + Φ(x ′i , x−i )− Φ(xi , x−i )

∣∣ ≤ ξ, (3)

the game is noisy-PG if

E[Ui (xi , x−i )]− E
[
Ui (x

′
i , x−i )

]
= Φ(xi , x−i )− Φ(x ′i , x−i ). (4)
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Potential Games

Potential Games

• Potential games are generalization of common payoff games

• Potential games have at least one NE [Monderer and Shapley, ’96]

• All optimal points of potential function are NEs [Monderer and Shapley, ’96]

• We call the global optimizer of potential function as the optimal NE.

• Log-linear learning algorithm (LLA) in exact-PG is known to converge to the optimal NE.
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Potential Games

Related Work in Potential Games

• (Exact-PG) Log-linear learning algorithm (LLA) [Marden and Shamma, 2012]

• (Near-PG) LLA [Cannodagon, 2011]

• (Noisy-PG) Binary-LLA [Leslie and Marden, 2011]

• We extend the results of LLA and Binary-LLA in near-PG and noisy-PG

• We apply the obtained results to wireless network problems
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Distributed learning in near-potential game

Binary Log-linear Learning Algorithm (BLLA)

BLLA in near-PG

1: Initialisation: Start with arbitrary action
profile x .

2: Set parameter τ .
3: while t ≥ 1 do
4: Select a player i and a trial action

x̂i ∈ Xi with uniform probability.
5: Player i plays action xi (t − 1) to

compute the cost Ui (x(t − 1)).
6: Player i plays the trial action x̂i to

compute its cost Ui (x̂i , x−i (t − 1)).
7: Player i selects action

xi (t) ∈ (xi (t − 1), x̂i ) with probability

(
1 + e∆i/τ

)−1
, (5)

∆i = Ui (x̂i , x−i (t − 1))−Ui (x(t − 1)).
8: All the other players repeat their

actions i.e., x−i (t) = x−i (t − 1).
9: end while

• τ controls perturbation

• τ → 0 BLLA ≡ Better response
• τ →∞ BLLA ≡ Uniform random

• For every τ > 0, the underlying Markov
chain is ergodic.

• Stochastically Stable States (SSSs) are
the support of stationary distribution as
τ → 0.
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Distributed learning in near-potential game

Rules for Resistance Computation

• Roots of the minimum resistance tree are SSSs.

• Resistance is the cost of transition of BLLA.

• We propose resistance rules that enables the convergence analysis of BLLA.

Proposition (Rules for Resistance Computation)

Let f , f1 and f2 be strictly positive functions. Let resistances Res(f ), Res(f1), and Res(f2) exist.
Let κ be a positive constant.

Rule 1. f1(τ) is sub-exponential if and only if Res(f1) = 0. In particular Res(κ) = 0.

Rule 2. Res(e−κ/τ ) = κ.

Rule 3. Res(f1 + f2) = min {Res(f1),Res(f2)}.

Rule 4. If Res(f1) < Res(f2) then Res(f1 − f2) = Res(f1).

Rule 5. Res(f1f2) = Res(f1) + Res(f2).

Rule 6. Res( 1
f

) = −Res(f ).

Rule 7. If ∀τ, f1(τ) ≤ f2(τ) then Res(f2) ≤ Res(f1).

Rule 8. If ∀τ, f1(τ) ≤ f (τ) ≤ f2(τ) and if Res(f1) = Res(f2) then Res(f ) exists and
Res(f ) = Res(f1).
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Distributed learning in near-potential game

Convergence of BLLA in Near-PG

Let Φ∗ and Φ† be the first minimum and second minimum values of the function Φ. Let |X | be
the cardinality of action space.

Theorem (Convergence to Optimal ε-NE)

For any ξ-potential game G with potential Φ and ε > 0 the stochastically stable states of LLA
and BLLA corresponds to a set of ε-NEs with potential less than Φ∗ + ε if

ξ <
ε

2 (|X | − 1)
. (6)

Corollary (Convergence to Optimal PNE)

The stochastically stable states of LLA and BLLA corresponds to a set of PNEs whose potential
is Φ∗ if

ξ <
Φ† − Φ∗

2(|X | − 1)
. (7)

• If the distance to exact PG is small then BLLA converges to optimal ε-NE.

• If the distance is sufficiently small then BLLA converges to optimal PNE.
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Distributed learning in noisy-potential game

BLLA in Noisy-PG

• (Key Idea) Use multiple samples of the noisy utilities.

• When a specific number of samples are used then BLLA converges.

Theorem

For any noisy potential game ĜN with potential Φ the stochastically stable states of BLLA are
the global maximizers of the potential Φ if one of the following holds.

1. The estimation noise is bounded in an interval of size ` and the number of estimation
samples used are

N ≥
(

log

(
4

ξ

)
+

2

τ

)
`2

2 (1− ξ)2 τ2
, (8)

where 0 < ξ < 1.

2. The estimation noise is unbounded with finite mean and variance. Let M(θ) be a finite
moment generating function of noise. Let θ∗ = argmaxθ θ (1− ξ) τ − log (M(θ)). The
number of samples used are

N ≥
log
(

4
ξ

)
+ 2
τ

log
(

eθ
∗(1−ξ)τ

M(θ∗)

) . (9)
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Distributed learning in noisy-potential game

BLLA in Noisy-PG

Theorem (Almost sure convergence)

Consider BLLA in a noisy-PG with a decreasing parameter τ(t) = 1/ log(1 + t), and the number
of samples N(τ) is given by above Theorem. Then, BLLA converges with probability 1 to the
global maximizer of the potential function.

• As τ decreases the number of samples N increases.

• In applications, a small N is desired.
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Application 1: Load balancing in small cell networks

Outline of Presentation

1. Potential Games (PG)

2. Distributed learning in near-potential game

3. Distributed learning in noisy-potential game

4. Application 1: Load balancing in small cell networks

5. Application 2: Channel assignment in D2D networks
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Application 1: Load balancing in small cell networks

Load balancing in small cell networks

Figure: Load balancing in small cell network

• Association is based on maximum received power Pigi (x)
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Application 1: Load balancing in small cell networks

Load balancing in small cell networks

Figure: Load balancing in small cell network

• Cell Range Extension (CRE) bias increases the coverage range.

• With CRE association is based on maximum biased received power Pigi (x)ci .

• (Outage) High interference may lead to user being not served.
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Application 1: Load balancing in small cell networks

Load balancing in small cell networks

Figure: Load balancing in small cell network

• Cell Range Extension (CRE) bias increases the coverage range.
• (Outage) High interference may lead to user being not served.
• Almost Blank Subframe (ABS) helps reduce outages.
• θi is the proportion of blank subframes.
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Application 1: Load balancing in small cell networks

Load balancing in small cell networks

Global Objective Function

φα
(
c̄, θ̄
)

=
∑
i∈S

fα
(
ρi
(
c̄, θ̄
))

(10)

Minimization Problem{
c̄∗, θ̄∗

}
= arg minFφα

(
c̄, θ̄
)

(11)

• (α = 0) : Rate optimal policy

• (α = 1) : Proportional fair policy

• (α = 2) : Delay optimal policy

• (α→∞) : Min-max load policy

Related Work:

• Convex optimization [Kim et al. 2012]

• Integer programming [Ye et al. 2013]

• Other work includes simulations, heuris-
tics, sub-optimal algorithms

Game Model

The interactions of BSs is modeled as a game
Γ =

{
S, {Xi}i∈S , {Ui}i∈S

}
, where S is a set

of BSs, Xi is strategy set, and Ui are cost
functions:

Ui (ai , a−i ) =
∑

j∈N$i

fα
(
ρj (ai , a−i )

)
. (12)

• N$i is a neighborhood of BS i , and $ is
neighborhood control parameter:

$ = 0 =⇒ N0
i = S

$ = 1 =⇒ N1
i = BS i

0 < $ < 1 =⇒ N$i ⊂ S

• The game Γ is a ξ$-PG

• We adapt BLLA for near-PG Γ
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Application 1: Load balancing in small cell networks
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Application 1: Load balancing in small cell networks

Neighborhood Scenario
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Figure: Large neighborhood with pathloss + fading
• All BSs can be neighbours with non-zero probability because of fading.
• Leads to centralised alogorithm.
• Distributed algorithm is obtained by limiting neighbors.
• Near-PG is best suitable in this scenario.
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Application 1: Load balancing in small cell networks

Results

Theorem (Sufficient Condition for Optimal ε-NE)

The constraint ξ$ < ε
2(|X |−1)

is satisfied if

$ ≤ εM (1− ρmax)α ,

where ρmax is the maximum load of a BS and M is a constant that depends on the system
parameters.

Corollary (Sufficient Condition for Optimal PNE)

The constraint ξ$ <
φ†α−φ

∗
α

2|X | is satisfied if

$ ≤ M
(
φ†α − φ∗α

)
(1− ρmax)α .

• As $ decreases the neighborhood expands that decreases the distance to exact-PG.

• A smaller neighborhood is desired so as to limit the information exchange.

• There is a tradeoff between the size of neighborhood and the quality of solution obtained.
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Application 1: Load balancing in small cell networks

Convergence of BLLA
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Figure: Convergence of BLLA (τ = 0.001, $ = 10−22, one macro BS, and 7 small BSs,
maximum bias is 16).

α = 0 α = 2 α→∞
BS i c∗i ρ∗i % c∗i ρ∗i % c∗i ρ∗i %

MBS 1 1 92 1 61 1 45
SBS 2 1 7 3 20 8 42
SBS 3 1 4 3 9 9 23
SBS 4 1 9 3 18 8 37
SBS 5 1 11 3 21 7 37
SBS 6 1 8 3 20 7 43
SBS 7 1 5 3 11 8 30
SBS 8 1 7 3 19 6 37
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Application 1: Load balancing in small cell networks

Optimal Coverage Regions
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(a) (α = 0) Rate-optimal.
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(c) (α = 50) Min-max.

• In this setting, optimal coverage regions of small BSs grows with α as the optimal CRE
bias increases.
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Application 1: Load balancing in small cell networks

Effect of ABS
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Figure: Improvement with ABS

• Outage constraint is met by restricting actions.

• ABS provides a new flexibility in obtaining a better load balancing with lower global cost.

Shabbir (Telecom ParisTech) Distributed Learning June 27, 2017 23 / 32



Application 2: Channel Assignment in D2D Network

Outline of Presentation

1. Potential Games (PG)

2. Distributed learning in near-potential game

3. Distributed learning in noisy-potential game

4. Application 1: Load balancing in small cell networks

5. Application 2: Channel assignment in D2D networks
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Application 2: Channel Assignment in D2D Network

Channel Assignment Problem (CAP) in D2D
Networks

D2D Network Model:

• Consider D set of all users

• F set of channels

• c̄ =
[
c1, c2, . . . , c|D|

]
is channel vector

• ν̂j (c̄) is noisy estimated data rate

• Average sum data rate

φ (c̄) = E
[∑

j∈D ν̂j (c̄)
]

Figure: D2D network model showing signal
and interference links.

Goal (Maximize expected sum data rate)

c̄∗ ∈ argmax
c̄∈F|D|

φ (c̄)

• Dynamic programming [Wang, 2016], graph-theoretical and heuristic solutions [maghsudi,
2016], game theory [song, 2014], etc..

• Even in centralized, full information, no-noise case this is NP-hard
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Application 2: Channel Assignment in D2D Network

Noisy-potential Game Model

Definition (CAP Game)

A CAP game Ĝ := {D, {Xi}i∈D, {Ûi}i∈D}, where D is a set of UEs that are players of the

game, {Xi}i∈D are action sets consisting of orthogonal channels, Ûi : X →R are random utility
functions, and X := X1 × X2 × . . .X|D|.

Proposition

CAP game ĜN := {D, {Xi}i∈D, {ÛN
i }i∈D} is a noisy-potential game with potential φ (a) if

ÛN
i = 1

N

∑N
k=1 Ûi , and marginal contribution utility

Ûi (ai , a−i ) =
∑

j∈D(ai )

ν̂j (ai , a−i )−
∑

j∈D(ai )\i
ν̂j (a

0
i , a−i ),

where D(ai ) is the set of UEs on channel ai , and a0
i is a null action.

• We apply BLLA for the noisy-PG ĜN by using the number of samples N is given in
Theorem.
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Application 2: Channel Assignment in D2D Network

Convergence of BLLA in noisy-PG
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(b) Effect of number of samples on
convergence of BLLA.

(a) Decreasing temperature results in smooth convergence compared to fixed

(b) For τ = 0.05, the number of samples N from the Theorem gives smooth convergence.
Otherwise, high fluctuations are observed.

(c) No guarantee of convergence for other number of samples.
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Application 2: Channel Assignment in D2D Network

Sum Data Rate Vs Number of Channels and UEs
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(a) Effect of channels on sum rate by
fixing #UEs to 20.
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(b) Effect of number of UEs on sum rate
by fixing #channels to 10.

(a) Sum rate increases with the number of channels since BLLA assign channels optimally
leading to lower interference per channel

(b) Sum rate increases linearly until 60 UEs as BLLA manages to assign channels optimally
and maintain low interference.
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Conclusion and Future Works

Conclusion and Future Works

Conclusion

• Extended the results to broader class of potential games: near-PG and noisy-PG

• Provided new rules for proving convergence

• Proposed an algorithm to learn the best parameter τ of LLA

• Load balancing in small cell network

• Channel assignment in D2D network

• Characterize the efficiency of distributed greedy algorithm for submodular maximization

Future Work

• Relationship of near-PG and noisy-PG

• Analysis of greedy algorithm with other utility functions

• Application to sensor networks
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