Distributed Learning in Games for Wireless Networks

Ph.D. Defense

M. Shabbir Ali

Advisors¹ : Marceau Coupechoux (Telecom ParisTech) & Pierre Coucheney (UVSQ)

June 27, 2017

¹Jason R. Marden, UCSB, USA.

Shabbir (Telecom ParisTech)

Distributed Learning

June 27, 2017

1 / 32

Motivation

Figure: 5G Network requirements

Some Key Network Technologies

- 1. Ultra dense small cell networks
- 2. Device-to-device networks
- 3. Sensor networks

Some Classical Questions

- 1. Resource allocation?
- 2. Load balancing?
- 3. Coverage maximization?

Solution Approaches

- 1. Centralized approaches
- 2. Distributed learning

Distributed Learning in Games for Wireless Networks

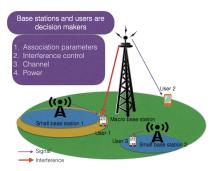


Figure: Small cell networks

- *Game:* Interactions can be modeled as a game
 - Players: Base stations and users
 - Strategies: Parameters
 - Cost/Utility: Related to data rate, load, ..
- Nash Equilibrium (NE): No player gains by deviating
- *Distributed Learning:* Players learn from their actions to reach the optimal NE

- 1. Potential Games (PG)
- 2. Distributed learning in near-potential game
- 3. Distributed learning in noisy-potential game
- 4. Application 1: Load balancing in small cell networks
- 5. Application 2: Channel assignment in D2D networks

Game and Nash Equilibrium

Definition (Game)

A finite game $\mathcal{G} = \{\mathcal{S}, \{X_i\}_{i \in \mathcal{S}}, \{U_i\}_{i \in \mathcal{S}}\}$, where \mathcal{S} is a set of players, $X = X_1 \times X_2 \times \ldots \times X_{|\mathcal{S}|}$ is action sets and $U_i : X \to \mathcal{R}$ is a cost or (utility) function. An action profile is denoted as $x = (x_i, x_{-i})$.

Definition (ϵ -Nash Equilibrium)

An action profile $\left(x_{i}^{*},x_{-i}^{*}
ight)\in X$ is an ϵ -NE if

$$U_i(x_i^*, x_{-i}^*) - U_i(x_i, x_{-i}^*) \le \epsilon, \ \forall i \in \mathcal{S}, x_i \in X_i.$$

(1)

If $\epsilon = 0$ then it is a Pure NE (PNE).

Potential Games

Definition (Potential games)

Consider a \mathcal{G} if there is a potential function $\Phi: X \to \mathcal{R}$ such that $\forall i \in S$, $\forall x_i, x'_i \in X_i$ and $\forall x_{-i} \in X_{-i}$ the below condition is true then the game is *exact-PG* if

$$U_i(x_i, x_{-i}) - U_i(x'_i, x_{-i}) = \Phi(x_i, x_{-i}) - \Phi(x'_i, x_{-i}),$$
(2)

the game is *near-PG* if

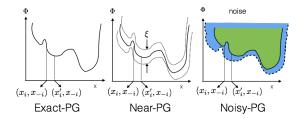
$$\left| U_i(x_i, x_{-i}) - U_i(x_i', x_{-i}) + \Phi(x_i', x_{-i}) - \Phi(x_i, x_{-i}) \right| \le \xi,$$
(3)

the game is noisy-PG if

$$\mathbb{E}[U_i(x_i, x_{-i})] - \mathbb{E}[U_i(x_i', x_{-i})] = \Phi(x_i, x_{-i}) - \Phi(x_i', x_{-i}).$$
(4)

イロト イポト イヨト イヨト

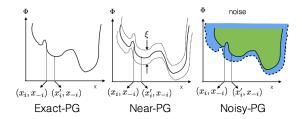
Potential Games



- Potential games are generalization of common payoff games
- Potential games have at least one NE [Monderer and Shapley, '96]
- All optimal points of potential function are NEs [Monderer and Shapley, '96]
- We call the global optimizer of potential function as the optimal NE.
- Log-linear learning algorithm (LLA) in exact-PG is known to converge to the optimal NE.

Potential Games

Related Work in Potential Games



- (Exact-PG) Log-linear learning algorithm (LLA) [Marden and Shamma, 2012]
- (Near-PG) LLA [Cannodagon, 2011]
- (Noisy-PG) Binary-LLA [Leslie and Marden, 2011]
- We extend the results of LLA and Binary-LLA in near-PG and noisy-PG
- We apply the obtained results to wireless network problems

Binary Log-linear Learning Algorithm (BLLA)

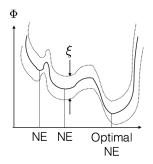
BLLA in near-PG

- 1: Initialisation: Start with arbitrary action profile *x*.
- 2: Set parameter τ .
- 3: while $t \ge 1$ do
- 4: Select a player *i* and a trial action $\hat{x}_i \in X_i$ with uniform probability.
- 5: Player *i* plays action $x_i(t-1)$ to compute the cost $U_i(x(t-1))$.
- 6: Player *i* plays the trial action \hat{x}_i to compute its cost $U_i(\hat{x}_i, x_{-i}(t-1))$.
- 7: Player *i* selects action $x_i(t) \in (x_i(t-1), \hat{x}_i)$ with probability

$$\left(1+e^{\Delta_i/\tau}\right)^{-1},\qquad(5)$$

$$\Delta_i = U_i(\hat{x}_i, x_{-i}(t-1)) - U_i(x(t-1)).$$

- 8: All the other players repeat their actions i.e., $x_{-i}(t) = x_{-i}(t-1)$.
- 9: end while



- τ controls perturbation
 - $\tau \rightarrow 0 \text{ BLLA} \equiv \text{Better response}$
 - $\tau \rightarrow \infty$ BLLA \equiv Uniform random
- For every $\tau > 0$, the underlying Markov chain is ergodic.
- Stochastically Stable States (SSSs) are the support of stationary distribution as $\tau \rightarrow 0$.

Rules for Resistance Computation

- Roots of the minimum resistance tree are SSSs.
- Resistance is the cost of transition of BLLA.
- We propose resistance rules that enables the convergence analysis of BLLA.

Proposition (Rules for Resistance Computation)

Let f, f_1 and f_2 be strictly positive functions. Let resistances Res(f), $\text{Res}(f_1)$, and $\text{Res}(f_2)$ exist. Let κ be a positive constant.

- Rule 1. $f_1(\tau)$ is sub-exponential if and only if $\text{Res}(f_1) = 0$. In particular $\text{Res}(\kappa) = 0$.
- Rule 2. Res $(e^{-\kappa/\tau}) = \kappa$.
- Rule 3. $Res(f_1 + f_2) = \min \{Res(f_1), Res(f_2)\}.$
- Rule 4. If $Res(f_1) < Res(f_2)$ then $Res(f_1 f_2) = Res(f_1)$.
- Rule 5. $Res(f_1f_2) = Res(f_1) + Res(f_2)$.
- *Rule 6.* $Res(\frac{1}{f}) = -Res(f)$.
- Rule 7. If $\forall \tau, f_1(\tau) \leq f_2(\tau)$ then $\operatorname{Res}(f_2) \leq \operatorname{Res}(f_1)$.
- Rule 8. If $\forall \tau, f_1(\tau) \leq f(\tau) \leq f_2(\tau)$ and if $\operatorname{Res}(f_1) = \operatorname{Res}(f_2)$ then $\operatorname{Res}(f)$ exists and $\operatorname{Res}(f) = \operatorname{Res}(f_1)$.

Convergence of BLLA in Near-PG

Let Φ^* and Φ^{\dagger} be the first minimum and second minimum values of the function Φ . Let |X| be the cardinality of action space.

Theorem (Convergence to Optimal ϵ -NE)

For any ξ -potential game G with potential Φ and $\epsilon > 0$ the stochastically stable states of LLA and BLLA corresponds to a set of ϵ -NEs with potential less than $\Phi^* + \epsilon$ if

$$\xi < \frac{\epsilon}{2\left(|X|-1\right)}.\tag{6}$$

Corollary (Convergence to Optimal PNE)

The stochastically stable states of LLA and BLLA corresponds to a set of PNEs whose potential is Φ^* if

$$\xi < \frac{\Phi^{\dagger} - \Phi^*}{2(|X| - 1)}.$$
(7)

Image: A matrix of the second seco

- If the distance to exact PG is small then BLLA converges to optimal ϵ -NE.
- If the distance is sufficiently small then BLLA converges to optimal PNE.

BLLA in Noisy-PG

- (Key Idea) Use multiple samples of the noisy utilities.
- When a specific number of samples are used then BLLA converges.

Theorem

For any noisy potential game $\hat{\mathcal{G}}^N$ with potential Φ the stochastically stable states of BLLA are the global maximizers of the potential Φ if one of the following holds.

1. The estimation noise is bounded in an interval of size ℓ and the number of estimation samples used are

$$N \ge \left(\log\left(\frac{4}{\xi}\right) + \frac{2}{\tau}\right) \frac{\ell^2}{2\left(1-\xi\right)^2 \tau^2},\tag{8}$$

where $0 < \xi < 1$.

2. The estimation noise is unbounded with finite mean and variance. Let $M(\theta)$ be a finite moment generating function of noise. Let $\theta^* = \operatorname{argmax}_{\theta} \theta (1 - \xi) \tau - \log (M(\theta))$. The number of samples used are

$$N \geq rac{\log\left(rac{4}{arepsilon}
ight)+rac{2}{ au}}{\log\left(rac{e^{ heta^*(1-arepsilon) au}}{M(heta^*)}
ight)}.$$

(9)

BLLA in Noisy-PG

Theorem (Almost sure convergence)

Consider BLLA in a noisy-PG with a decreasing parameter $\tau(t) = 1/\log(1+t)$, and the number of samples $N(\tau)$ is given by above Theorem. Then, BLLA converges with probability 1 to the global maximizer of the potential function.

- As τ decreases the number of samples N increases.
- In applications, a small N is desired.

Outline of Presentation

- 1. Potential Games (PG)
- 2. Distributed learning in near-potential game
- 3. Distributed learning in noisy-potential game
- 4. Application 1: Load balancing in small cell networks
- 5. Application 2: Channel assignment in D2D networks

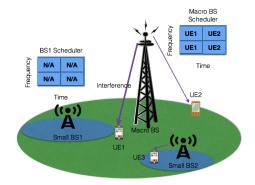


Figure: Load balancing in small cell network

• Association is based on maximum received power $P_i g_i(x)$

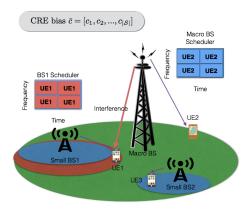


Figure: Load balancing in small cell network

- Cell Range Extension (CRE) bias increases the coverage range.
- With CRE association is based on maximum biased received power $P_i g_i(x) c_i$.
- (Outage) High interference may lead to user being not served.

Shabbir (Telecom ParisTech)

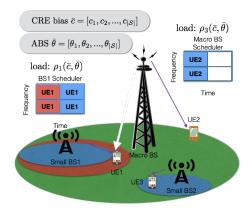


Figure: Load balancing in small cell network

- Cell Range Extension (CRE) bias increases the coverage range.
- (Outage) High interference may lead to user being not served.
- Almost Blank Subframe (ABS) helps reduce outages.
- θ_i is the proportion of blank subframes.

Global Objective Function

$$\phi_{\alpha}\left(ar{c},ar{ heta}
ight) = \sum_{i\in\mathcal{S}} f_{\alpha}\left(
ho_{i}\left(ar{c},ar{ heta}
ight)
ight)$$
 (10)

Minimization Problem

$$\left\{ar{m{c}}^{*},ar{m{ heta}}^{*}
ight\} = \operatorname{arg\,min}_{\mathcal{F}}\phi_{lpha}\left(ar{m{c}},ar{m{ heta}}
ight)$$
 (11

- $(\alpha = 0)$: Rate optimal policy
- $(\alpha = 1)$: Proportional fair policy
- $(\alpha = 2)$: Delay optimal policy
- $(\alpha \rightarrow \infty)$: Min-max load policy

Related Work:

- Convex optimization [Kim et al. 2012]
- Integer programming [Ye et al. 2013]
- Other work includes simulations, heuristics, sub-optimal algorithms

Global Objective Function

$$\phi_{\alpha}\left(ar{c},ar{ heta}
ight) = \sum_{i\in\mathcal{S}} f_{\alpha}\left(
ho_{i}\left(ar{c},ar{ heta}
ight)
ight)$$
 (10)

Minimization Problem

$$\left\{\bar{\boldsymbol{c}}^{*},\bar{\boldsymbol{\theta}}^{*}\right\} = \arg\min_{\mathcal{F}}\phi_{\alpha}\left(\bar{\boldsymbol{c}},\bar{\boldsymbol{\theta}}\right)$$
(11)

- $(\alpha = 0)$: Rate optimal policy
- $(\alpha = 1)$: Proportional fair policy
- $(\alpha = 2)$: Delay optimal policy
- $(\alpha \rightarrow \infty)$: Min-max load policy

Related Work:

- Convex optimization [Kim et al. 2012]
- Integer programming [Ye et al. 2013]
- Other work includes simulations, heuristics, sub-optimal algorithms

Game Model

The interactions of BSs is modeled as a game $\Gamma = \{S, \{X_i\}_{i \in S}, \{U_i\}_{i \in S}\}$, where S is a set of BSs, X_i is strategy set, and U_i are cost functions:

$$U_i(\mathbf{a}_i, \mathbf{a}_{-i}) = \sum_{j \in N_i^{\infty}} f_{\alpha}\left(\rho_j(\mathbf{a}_i, \mathbf{a}_{-i})\right). \quad (12)$$

N[∞]_i is a neighborhood of BS *i*, and ∞ is neighborhood control parameter:

$$\begin{split} \varpi &= 0 \implies N_i^0 = S \\ \varpi &= 1 \implies N_i^1 = BS \ i \\ < \varpi < 1 \implies N_i^\varpi \subset S \end{split}$$

• The game Γ is a ξ^{ϖ} -PG

0

We adapt BLLA for near-PG F

June 27, 2017 18 / 32

Application 1: Load balancing in small cell networks

Neighborhood Scenario

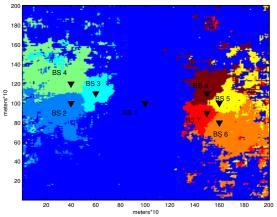


Figure: Large neighborhood with pathloss + fading

- All BSs can be neighbours with non-zero probability because of fading.
- Leads to centralised alogorithm.
- Distributed algorithm is obtained by limiting neighbors.
- Near-PG is best suitable in this scenario.

Shabbir (Telecom ParisTech)

Results

Theorem (Sufficient Condition for Optimal *e*-NE)

The constraint $\xi^{\varpi} < rac{\epsilon}{2(|X|-1)}$ is satisfied if

$$\varpi \leq \epsilon M \left(1 - \rho_{\max}\right)^{\alpha},$$

where ρ_{max} is the maximum load of a BS and M is a constant that depends on the system parameters.

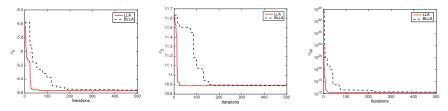
Corollary (Sufficient Condition for Optimal PNE)

The constraint $\xi^{\varpi} < rac{\phi^{\dagger}_{lpha} - \phi^{*}_{lpha}}{2|X|}$ is satisfied if

$$arpi \leq M\left(\phi^{\dagger}_{lpha}-\phi^{*}_{lpha}
ight)\left(1-
ho_{\mathsf{max}}
ight)^{lpha}.$$

- As ϖ decreases the neighborhood expands that decreases the distance to exact-PG.
- A smaller neighborhood is desired so as to limit the information exchange.
- There is a tradeoff between the size of neighborhood and the quality of solution obtained.

Convergence of BLLA



(a) $(\alpha = 0)$ Rate-optimal. (b) $(\alpha = 2)$ Delay-optimal. (c) $(\alpha = 50)$ Min-max.

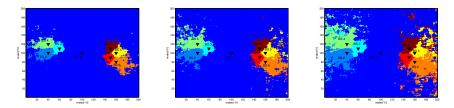
Figure: Convergence of BLLA ($\tau = 0.001$, $\varpi = 10^{-22}$, one macro BS, and 7 small BSs, maximum bias is 16).

	$\alpha = 0$		$\alpha = 2$		$\alpha \to \infty$	
BS i	c*	$\rho_i^*\%$	c*	$\rho_i^*\%$	c;*	$\rho_i^*\%$
MBS 1	1	92	1	61	1	45
SBS 2	1	7	3	20	8	42
SBS 3	1	4	3	9	9	23
SBS 4	1	9	3	18	8	37
SBS 5	1	11	3	21	7	37
SBS 6	1	8	3	20	7	43
SBS 7	1	5	3	11	8	30
SBS 8	1	7	3	19	6	37

Shabbir (Telecom ParisTech)

Application 1: Load balancing in small cell networks

Optimal Coverage Regions



(a) $(\alpha = 0)$ Rate-optimal. (b) $(\alpha = 2)$ Delay-optimal. (c) $(\alpha = 50)$ Min-max.

- In this setting, optimal coverage regions of small BSs grows with α as the optimal CRE bias increases.

Effect of ABS

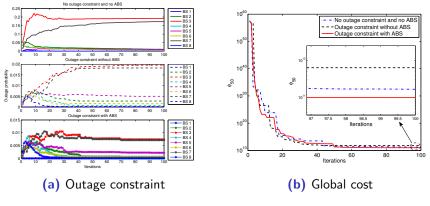


Figure: Improvement with ABS

- Outage constraint is met by restricting actions.
- ABS provides a new flexibility in obtaining a better load balancing with lower global cost.

Outline of Presentation

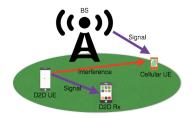
- 1. Potential Games (PG)
- 2. Distributed learning in near-potential game
- 3. Distributed learning in noisy-potential game
- 4. Application 1: Load balancing in small cell networks
- 5. Application 2: Channel assignment in D2D networks

Application 2: Channel Assignment in D2D Network

Channel Assignment Problem (CAP) in D2D Networks

D2D Network Model:

- Consider D set of all users
- .F set of channels
- $\bar{c} = [c_1, c_2, \dots, c_{|\mathcal{D}|}]$ is channel vector
- $\hat{\nu}_i(\bar{c})$ is noisy estimated data rate
- Average sum data rate $\phi(\bar{c}) = \mathbb{E}\left[\sum_{i \in D} \hat{\nu}_i(\bar{c})\right]$



25 / 32

Figure: D2D network model showing signal and interference links.

Goal (Maximize expected sum data rate)

$$ar{c}^* \in \operatorname*{argmax}_{ar{c}\in\mathcal{F}^{|\mathcal{D}|}} \phi(ar{c})$$

- Dynamic programming [Wang, 2016], graph-theoretical and heuristic solutions [maghsudi, 2016], game theory [song, 2014], etc..
- Even in centralized, full information, no-noise case this is NP-hard June 27, 2017

Shabbir (Telecom ParisTech)

Distributed Learning

Noisy-potential Game Model

Definition (CAP Game)

A CAP game $\hat{\mathcal{G}} := \{\mathcal{D}, \{X_i\}_{i \in \mathcal{D}}, \{\hat{U}_i\}_{i \in \mathcal{D}}\}$, where \mathcal{D} is a set of UEs that are players of the game, $\{X_i\}_{i \in \mathcal{D}}$ are action sets consisting of orthogonal channels, $\hat{U}_i : X \to \mathcal{R}$ are random utility functions, and $X := X_1 \times X_2 \times \ldots \times X_{|\mathcal{D}|}$.

Proposition

CAP game $\hat{\mathcal{G}}^{\mathcal{N}} := \{\mathcal{D}, \{X_i\}_{i \in \mathcal{D}}, \{\hat{U}_i^N\}_{i \in \mathcal{D}}\}$ is a noisy-potential game with potential ϕ (a) if $\hat{U}_i^N = \frac{1}{N} \sum_{k=1}^N \hat{U}_i$, and marginal contribution utility

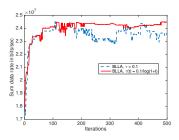
$$\hat{U}_i(a_i, a_{-i}) = \sum_{j \in \mathcal{D}(a_i)} \hat{\nu}_j(a_i, a_{-i}) - \sum_{j \in \mathcal{D}(a_i) \setminus i} \hat{\nu}_j(a_i^0, a_{-i}),$$

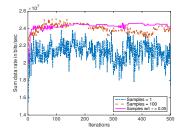
where $\mathcal{D}(a_i)$ is the set of UEs on channel a_i , and a_i^0 is a null action.

- We apply BLLA for the noisy-PG $\hat{\mathcal{G}}^{\mathcal{N}}$ by using the number of samples N is given in Theorem.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Convergence of BLLA in noisy-PG



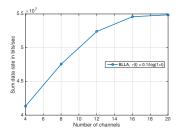


(a) Convergence of BLLA for fixed temperature and decreasing temperature.

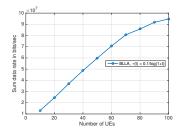
(b) Effect of number of samples on convergence of BLLA.

- (a) Decreasing temperature results in smooth convergence compared to fixed
- (b) For $\tau = 0.05$, the number of samples N from the Theorem gives smooth convergence. Otherwise, high fluctuations are observed.
- (c) No guarantee of convergence for other number of samples.

Sum Data Rate Vs Number of Channels and UEs



(a) Effect of channels on sum rate by fixing #UEs to 20.



(b) Effect of number of UEs on sum rate by fixing #channels to 10.

- (a) Sum rate increases with the number of channels since BLLA assign channels optimally leading to lower interference per channel
- (b) Sum rate increases linearly until 60 UEs as BLLA manages to assign channels optimally and maintain low interference.

Conclusion and Future Works

Conclusion

- Extended the results to broader class of potential games: near-PG and noisy-PG
- · Provided new rules for proving convergence
- Proposed an algorithm to learn the best parameter au of LLA
- Load balancing in small cell network
- Channel assignment in D2D network
- Characterize the efficiency of distributed greedy algorithm for submodular maximization

Future Work

- Relationship of near-PG and noisy-PG
- Analysis of greedy algorithm with other utility functions
- Application to sensor networks

Publications I

Journal Papers

- J1 Mohd. Shabbir Ali, Pierre Coucheney, and Marceau Coupechoux "Load Balancing in Heterogeneous Networks Based on Distributed Learning in Near-Potential Games", IEEE Trans. Wireless Commun., vol.15, no.7, pp.5046-5059, 2016.
- **J2** Mohd. Shabbir Ali, Pierre Coucheney, and Marceau Coupechoux "*Optimal distributed* channel assignment in D2D networks using learning in noisy potential games", To be submitted *IEEE Trans. Wireless Commun.*, 2017.
- J3 Mohd. Shabbir Ali, David Grimsman, João P. Hespanha and Jason R. Marden "Efficiency and Information Trade-off of Submodular Maximization Problems", To be Submitted IEEE Transactions on Automatic Control, 2017.
- J4 Mohd. Shabbir Ali and Neelesh B. Mehta, "Modeling Time-Varying Aggregate Interference in Cognitive Radio Systems, and Application to Primary Exclusive Zone Design," IEEE Trans. Wireless Commun., vol.13, no.1, pp.429-439, Jan. 2014.

arXiv Paper

X1 Mohd. Shabbir Ali, Pierre Coucheney, and Marceau Coupechoux " Optimal distributed channel assignment in D2D networks using learning in noisy potential games", arXiv preprint arXiv:1701.04577, 2017.

3

(日) (周) (三) (三)

Publications II

Conference Papers

- C1 Mohd. Shabbir Ali, Pierre Coucheney, and Marceau Coupechoux "Load Balancing in Heterogeneous Networks Based on Distributed Learning in Potential Games", Proc. IEEE WiOpt, pp.371-378, May 2015.
- **C2** Mohd. Shabbir Ali, Pierre Coucheney, and Marceau Coupechoux "*Optimal distributed* channel assignment in D2D networks using learning in noisy potential games", Accepted in INFOCOM 5G and Beyond Workshop, May 2017.
- C3 Mohd. Shabbir Ali and N. B. Mehta, "Modeling time-varying aggregate interference from cognitive radios and implications on primary exclusive zone design", IEEE Global Communications Conference (GLOBECOM), pp. 3760-3765, 2013.
- **C4** Mohd. Shabbir Ali, Pierre Coucheney, and Marceau Coupechoux "*Learning Annealing Schedule of Log-Linear Algorithms for Load Balancing in HetNets*", *Proc. European Wireless Conference* pp. 1-6, 2016.
- **C5** Mohd. Shabbir Ali, Pierre Coucheney, and Marceau Coupechoux "*Rules for Computing Resistance of Transitions of Learning Algorithms in Games*", Accepted in *International Conference on Game Theory for Networks (GAMENETS)*, May 2017.
- C6 Mohd. Shabbir Ali, David Grimsman, João P. Hespanha and Jason R. Marden "Efficiency and Information Trade-off of Submodular Maximization Problems", In Review IEEE Conference on Decision and Control (CDC), 2017.

3

(日) (同) (三) (三)

THANK YOU!

イロト イヨト イヨト イヨト

3