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Introduction

Introduction

Graph theory is a powerful tool in communication networks

Performance evaluation: the theory provides optimal solutions or
near-optimal algorithms that can be used for benchmarking existing
or future propositions

Protocol design: several MAC, routing protocols or scheduling
algorithms use the results of graph theory

Examples of applications:

Ethernet: the spanning tree protocol
Routing: Link State algorithms
Scheduling: OFDMA (matching), TDMA (frame design)
Ad hoc networks: MAC design, routing
Cellular networks: frequency assignment
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First Concepts

First Concepts: a Graph

Definition

A graph G is a triple consisting in a vertex set V (G ), an edge set E (G )
and a relation that associates to each edge two vertices called its
endpoints.

Here: V (G ) = {u, v ,w , x , y} and E (G ) = {uv , uw , vx ,wx , xy}
A subgraph H of G is such that V (H) ⊆ V (G ), E (H) ⊆ E (G ) and
the relation bw. vertices and edges in H is the same as in G
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First Concepts

First Concepts: a Simple Graph

A loop is an edge whose endpoints are equal

Multiple edges are edges with the same pair of endpoints

Definition

A simple graph is a graph with no loops nor multiple edges.

Two endpoints of an edge are said to be adjacent or neighbors

We write u ↔ v
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First Concepts

First Concepts: Complement Graph

Definition

The complement Ḡ of a simple graph such that V (Ḡ ) = V (G ) and
uv ∈ E (Ḡ )⇔ uv /∈ E (G ). A clique is a set of pairwise adjacent vertices.
An independant set (or stable set) is a set of pairwise non adjacent
vertices.

In G , {u, v} is a clique of size 2, {v ,w , y} is a stable set of size 3

In Ḡ , cliques become independent sets and vice versa
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First Concepts

First Concepts: Bipartite Graph

Definition

A graph G is bipartite if V (G ) is the union of two independent sets,
called partite sets.

Example: wedding

There are 4 men and 3 women

Not all couples are feasible

Can we do a good matching bw. men and women ?
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First Concepts

First Concepts: Complete Graph

Definition

A graph is complete if all its vertices are pairwise adjacent. It is denoted
Kn when it has n vertices. In a complete bipartite graph, two vertices
are adjacent if and only if they are in different partite sets.

A complete graph is characterized by its number of vertices n

The number of edges of a complete graph is given by: m = n(n−1)/2
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First Concepts

First Concepts: Chromatic Number

Definition

The chromatic number of a graph G , χ(G ), is the minimum number of
colors needed to label the vertices so that no adjacent vertices have the
same color.

Graph G has a chromatic number of χ(G ) = 2

Graph G ′ has a chromatic number of χ(G ′) = 3

χ(G ) is also the minimum number of independent sets
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First Concepts

First Concepts: Paths, Cycles and Connectedness

A path is a simple graph whose vertices can be ordered so that
vertices are adjacent if and only if they are consecutive in the list

A cycle is a simple graph whose vertices can be ordered in a cyclic
sequence so that two vertices are adjacent if and only if they are
consecutive in the list.

{u, y , v ,w} is a path, {v ,w , y} is cycle

Definition

A graph G is connected if each pair of vertices belongs to a path.
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First Concepts

First Concepts: Degree

Definition

The degree of a vertex v of a graph G , denoted dG (v), is the number of
edges incident to v (loops count twice).

Theorem

If G is a graph, then:
∑

v∈V (G) dG (v) = 2m.

The minimum degree is denoted δG , the maximum degree ∆G

For a graph G , nδG ≤ 2m ≤ n∆G
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First Concepts

First Concepts: Weighted Graph

Definition

A weighted graph G consists in a vertex set V (G ), an edge set E (G ), a
relation that associates to each edge two vertices and an weighting
function w : E → R.

A simple graph can be represented by an adjacency matrix
M = {w(u, v)}u,v∈V .

If (u, v) /∈ E (G ), w(u, v) =∞.
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Trees

Trees: Definitions

Definition

A tree is a connected acyclic graph. A leaf is a vertex of degree 1. A
spanning subgraph of G is a subgraph with vertex set V (G ). A spanning
tree is a spanning subgraph that is a tree.
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Trees

Trees: Characterization

Theorem

For a n-vertex graph G (n ≥ 1), the following are equivalent:

(1) G is a tree (connected and acyclic).

(2) G is connected and has m = n − 1 edges.

(3) G is acyclic and has m = n − 1 edges.

(4) For any u, v ∈ V (G ), G has exactly one (u, v)-path.
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Trees

Trees: Kruskal’s Algorithm

Kruskal’s Algorithm

Input: A simple connected weighted graph.

Output: A minimum weight spanning tree.

Begin F ← E ; A← 0

While: |A| < n − 1 do:

Find e ∈ F such that w(e) is minimum;

F ← F − {e};
If G (A ∪ {e}) is acyclic then: A← A ∪ {e};
endif

endwhile
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Trees

Trees: Kruskal’s Algorithm

Remarks:

F is the set of edges to be considered, A is the set of selected edges.

An exhaustive search would be prohibitive (typical from optimization
problems).

We know that a solution exists.

The algorithm is greedy : at each step, we consider the best solution.

The algorithm stops when we have a tree (|A| = n − 1).
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Trees

Trees: Example in Communication Networks

Bridges B1...B7 interconnect six LAN

Each LAN is associated to a path cost related to its data rate
(defined in IEEE 802.1D)

We look for a loop-free topology in this bridged LAN

In practice, the problem is solved in a distributed way using the
spanning tree protocol
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Trees

Trees: Example in Communication Networks
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Trees

Trees: Example in Communication Networks

Algorithm steps:
1 F = {B1B2, B1B3, B1B4, B2B3, B3B4, B2B5, B3B6, B3B7, B5B6, B6B7}, A = ∅
2 e = {B1B2}, F ← F − {B1B2}, A = {B1B2}
3 e = {B1B3}, F ← F − {B1B3}, A = {B1B2, B1B3}
4 e = {B1B4}, F ← F − {B1B4}, A = {B1B2, B1B3, B1B4}
5 e = {B3B6}, F ← F − {B3B6}, A = {B1B2, B1B3, B1B4, B3B6}
6 e = {B3B7}, F ← F − {B3B7}, A = {B1B2, B1B3, B1B4, B3B6, B3B7}
7 e = {B5B6}, F ← F − {B5B6}, A = {B1B2, B1B3, B1B4, B3B6, B3B7, B5B6}, |A| = 6
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Shortest Paths

Shortest Paths: Definitions

Let G = (E ,V ,w) be a simple directed weighted graph

w(e) is the length of edge e

The length of a path is the sum of the lengths of its edges

Definition

The distance d(u, v), u, v ∈ V in a weighted graph is the minimum sum
of the weights on the edges on a (u, v)-path.
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Shortest Paths

Shortest Paths: Dijkstra’s Algorithm

Dijkstra’s Algorithm

Input: A weighted graph with non-negative edge weights and a source u

Output: The shortest path tree from u and all distances d(u, v), v ∈ V

Begin S = ∅, t(u) = 0,
∀z 6= u, t(z) =∞ and prev(z) = undefined

Do:

Select v = arg minz /∈S t(z)
S ← S ∪ {v}
For each edge vz , z /∈ S ,

If t(v) + w(vz) < t(z)
then t(z)← t(v) + w(vz) and prev(z)← v
endif

Until S = V or ∀z /∈ S , t(z) =∞
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Shortest Paths

Shortest Paths: Dijkstra’s Algorithm

Remarks:

S is the set of vertices for which the shortest path to u is known

For any vertex z , t(z) is the shortest path length yet found

prev(z) is the previous vertex on the shortest (u, z)-path yet found

The shortest paths form together a spanning tree generated from u

Complexity: O(n2) (linear search of the min value in a linked list)

Shortest path from u to t

Begin P = ∅, v ← t

While: prev(v) is defined

Do:

Insert v at the beg. of P
v ← prev(v)

endwhile
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Shortest Paths

Shortest Paths: Example
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Shortest Paths

Shortest Paths: Example

Algorithm steps:
1 S = ∅, t(u) = 0, ∀z 6= u, t(z) =∞ and prev(z) = undefined

2 S ← S ∪ {u}, t(v) = 14, t(x) = 9, t(w) = 7, prev(v) = prev(x) = prev(w) = u

3 S ← S ∪ {w}, t(z) = 22, prev(z) = w

4 S ← S ∪ {x}, t(z) = 20, t(v) = 11, prev(z) = prev(v) = x

5 S ← S ∪ {v}, t(y) = 20, prev(y) = v

6 S ← S ∪ {z}
7 S ← S ∪ {y}
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Shortest Paths

Shortest Paths: Example in Communication
Networks

Link State routing (e.g. OSPF):

Each router determines its neighbors

Link state advertisements are flooded through the network, they
include the node id and its neighbors

Each router creates a graph (a map) of the network

Each router independently runs Dijkstra’s algorithm

Routing table are built based on the best next hop for every
destination
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Edge Colouring

Edge Colouring: Introduction

Vertex and edge colouring problems were at the origin of the graph
theory

Example: the ”four colour” theorem (1976)
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Edge Colouring

Edge Colouring: Introduction

Frequency assignment with adjacent channel constraint in GSM is a
T-coloring problem:

In a region, there are n BS V = {x1, ..., xn}
We define the interference graph G = (V ,E ): (xi , xj ) ∈ E iff xi and
xj interfere

We wish to assign a frequency f (x) ∈ N to each BS

There is a set T of non negative integers of disallowed separations

(x , y) ∈ E ⇒ |f (x)− f (y)| /∈ T

Ex: 3 vertices complete graph and T = {0, 1, 4, 5}. Greedy algorithm
provides 1, 3, 9 assignment (span is 8). Another T-coloring is 1, 4, 7
(span is 6).
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Edge Colouring

Edge Colouring: Definitions

Definition

A k-edge-colouring is a labeling f : E (G )→ S with |S | = k , the labels
are colors. A k-edge-colouring is proper if incident edges have different
labels. A graph is k-edge-colorable if it has a proper k-edge-colouring.
The edge chromatic index of a loopless graph G , χ′(G ), is the smallest
k such that G is k-edge-colorable.

A graph with loops has no proper edge-colouring

Multiple edges are possible in this definition
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Edge Colouring

Edge Colouring: Example

The following graph is colored with 4 colors

Its edge chromatic index is also χ′(G ) = 4
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Edge Colouring

Edge Colouring: Some Results

First result

∆G ≤ χ′(G ) ≤ m,

where ∆G is the maximum degree and m is the number of edges.

The upper bound is obvious (attribute one color per edge)

The lower bound is often reached
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Edge Colouring

Edge Colouring: Some Results

Theorem

If G is a simple graph, χ′(G ) is ∆G or ∆G + 1

This is not true any more in case of multiple edges

Example of the flat triangle

In this case, χ′(G ) = 9 and ∆G = 6

Theorem

If G is a bipartite graph (simple or not), χ′(G ) = ∆G
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Edge Colouring

Edge Colouring: The Scheduling Problem

p professors have to give lectures to c student classes

Lectures are given in time slots along the week

Lectures are characterized by the number of slots to be given

We look for a schedule of the week

Constraint 1: a professor hasn’t two lectures at the same time

Constraint 2: a student class has no lecture with two professors at the
same time

M. Coupechoux (ENST) Graph Theory Feb 2014 32 / 39



Edge Colouring

Edge Colouring: The Scheduling Problem

Example: 4 professors and 5 classes

y1 y2 y3 y4 y5

x1 1 2 0 0 0

x2 1 1 1 0 0

x3 0 1 1 1 1

x4 0 0 0 1 2
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Edge Colouring

Edge Colouring: The Scheduling Problem

Modelization with a bipartite graph:

G = (X ,Y ,E ), where

X is the set of professors,

Y the set of classes and

(x , y) ∈ E if x has to teach one slot to y
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Edge Colouring

Edge Colouring: The Scheduling Problem

G is a bipartite graph

m = 13, n = 9 and ∆G = 4

A possible schedule is a proper edge-colouring of G

According to the previous theorem, the minimum number of needed
slots is χ′(G ) = ∆G = 4
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Edge Colouring

Edge Colouring: The Scheduling Problem

Geedy algorithm:

Consider vertices in descending
order of degree

Attribute to each edge an
admissible color with the lowest
index
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Conclusion

Conclusion

Some classical topics not considered in this lecture:

Vertex colouring

Matching

Flows

Planar graphs

Directed graphs

Cycles
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Glossary

French/English Glossary

Edge: arête

Vertex: sommet

Endpoint: extrémité

Path: châıne

Connected: connexe

Tree: arbre

Spanning tree: arbre couvrant

Weighted graph: graphe valué

Directed graph: graphe orienté

Greedy: glouton

Component: composante
connexe.

Shortest paths: chemins
optimaux

Linked list: liste châınée

Set: ensemble

Loop: boucle

Bipartite: biparti

Adjacency matrix: matrice
d’adjacence

Leaf: sommet pendant

To sort: trier

Neighbor: voisin

Colouring: coloration
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