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Abstract—Connected vehicles will likely use hybrid com-
munication networks. Presumably a licence-free radio access
technology (RAT) will be used for vehicle-to-vehicle (V2V)
contact, complemented by a cellular network, with an associated
usage cost. In previous work, we developed a self-adaptive
clustering algorithm for reducing cellular access costs, while
ensuring that clustering overheads do not saturate the V2V link.
However, the vehicle in the role of Cluster Head (CH) is the only
one to bear the communication costs in a cluster’s lifetime. This
means certain drivers may pay much more than others for the
same service, which may in turn undermine the system’s social
acceptability. In this paper, we adopt the theory of distributive
justice to ensure fairness over time, and hence make the system
socially acceptable. We compare the proposed approach with
our previous algorithm through simulations, analyzing network
performance and specific fairness metrics. We show that the
proposed approach improves fairness metrics significantly, while
not affecting network performance.

I. INTRODUCTION

Numerous services and applications for connected vehicles
are being conceived, from road safety to entertainment,
exchanging different volumes of data, from vehicle to vehicle
(V2V) or between vehicles and the internet. Two standards
emerge as favourites for delivering the connectivity perfor-
mance needed, with the specific constraints of vehicular
networks. These are, on the one hand, IEEE 802.11p (an
adapted version of the well-known WiFi) and on the other
hand, LTE (the fourth generation cellular network standard).
While the former uses a licence-free spectrum, the latter
requires a usage cost, which we aim to reduce. In [1] and [2]
we presented an Auto-adaptive Clustering Algorithm, where
clusters improve the usage efficiency of the cellular network
traffic through data aggregation and off-loading on the V2V
link. The algorithm also ensures a trade-off between reduced
traffic in the cellular network and saturation with increased
packet loss into the V2V link.

The problem addressed in this paper is as follows. In
clustering algorithms where the Cluster Head (CH) acts as a
gateway to the internet, being elected CH (the only vehicle
in a cluster which uses the cellular network in this model)
is a significant burden since each vehicle is linked to an
individual’s account with a mobile operator, with a limited
traffic quota that it will consume for the benefit of the group.

It becomes evident that improvements need to be made in
order to ensure that, even though at a certain moment only
one vehicle is a CH and will consume its quota, there will
be a fair quota consumption across vehicles over time. The
cellular quota consumption is visible to the drivers. If they
perceive that it is consumed in an unfair way, they can, at
any moment, leave the system.

In this paper we propose an approach that adopts the
theory of distributive justice and applies it to the election of
the Cluster Head in clustering algorithms. In particular, we
apply it to the self-adaptive clustering algorithm we presented
in [2]. At the same time, we believe that our approach is
similarly applicable to other clustering algorithms.

We establish a correspondence between the variables in
our clustering model and a set of canons of justice. The
vehicles that are in the process of forming a cluster will cast
their votes for their preferred and most convenient canon.
The final elector of the Cluster Heads, which in our case
is the cellular base station, takes all votes into account,
together with the state of each vehicle, in order to make
the best decision for both performance and fairness criteria.
The proposed fairness-aware algorithm is compared, via
simulation, with the one presented in [2] with respect to both
short-term network performance (for which that algorithm
was designed) and long-term fairness metrics'. The results
show that the algorithm improves fairness criteria without
adversely affecting network performance.

The article is organized as follows. Section II provides
information about the background literature concerning the
theory of commons and of distributive justice. We introduce
our model and algorithms in Section III. Subsequently, the
simulation results are presented and analyzed in Section IV.
Conclusions are drawn in Section V, where hints for future
work are also presented.

II. BACKGROUND AND RELATED WORK

Our application domain features different types of shared
resources — e.g. aggregated information from clusters of

IPossible comparisons with other methods that can be adapted to this
problem will be the object of future work.



vehicles; subscription-based access to cellular networks, at
a cost; and unlicensed V2V access, prone to saturation if
unregulated. For all of these resources, we have different
degrees of ability for regulation (for preventing someone
from using them), and the usage that someone makes of
each of these resources affects in different degrees how much
others can yield from it. This corresponds to the criteria of
excludability and subtractability used by Elinor Ostrom [3]
to classify goods in four categories (i.e. public goods, toll
goods, private goods and common-pool resources).

After studying several cases of resource exploitation in
different communities, and for very diverse types of goods,
Ostrom presented eight design principles for governing com-
mons, ensuring the endurance of the resources. In our work,
we have always kept this design principles in mind.

Ostrom’s principles for managing commons are there to
guarantee that a resource endures, but they do not imply that
the outcome is actually fair. In [4], the author summarizes
some desirable properties of a fair result:

e Proportional: Each agent receives a resource allocation
proportional to its participation in the system;

e Envy free: The allocation of a given agent should not be
“more desirable” to another agent, compared to its own
allocation;

o Equitable: No agent derives more utility from its re-
ceived allocation than any other agent in the system from
its own;

e Efficient: Deliver the greatest good for the greatest
number;

o Cost-effective: The computational cost of the distribution
is not disproportionate;

e Timely: The computation of the distribution can be
completed fast enough to be useful.

There are, nevertheless, two problems: on the one hand,
these properties do not always come together and there
can even be a competition between those aspects (like a
cost-effective distribution method that does not produce an
equitable outcome). On the other hand, and most importantly,
these properties are usually applied to static distribution
methods. The proposal in [4] focuses on fairness over time,
through a series of individually unfair allocations that even-
tually lead to a fair result on the long term, by following
Rescher’s idea of legitimate claims. In this respect, our
interest matches their motivation: it will be impossible to
produce a fair outcome when designating a cluster head, but
we aim to achieve a globally fair designation outcome over
the long run.

Rescher [5] introduces the concept of social justice, which
consists in determining what legitimate claims an individual
has, and treating each of these claims equally. His work does
not rely on how those claims can emerge, but rather focuses
on the concept of distributive justice, which deals with how
far the legitimate claims of each individual should be met,
given competing claims from other people or entities, and
limited resources.

The analysis made by Rescher about the most usual ways
that other authors had used to determine fairness could fit in
what he called the seven canons of distributive justice: treat-
ment as equals, according to each one’s needs, according to
each one’s productive contribution, to efforts and sacrifices,
to the social value of the services provided by the individual
to the society, to supply and demand, or to merits and
achievements. Rescher found that none of these canons, taken
individually, could grant true distributive justice. Instead,
he proposed to analyze every participant’s legitimate claims
following each of these aspects, and focus on how to balance
them in case of conflict.

III. FAIRNESS-AWARE ELECTION ALGORITHM

In our previous work, we proposed a clustering algorithm
that aims to optimise the usage of the cellular network
resources. The intra-cluster communication is ensured by a
license-free V2V network, while the costly communication
with the cellular network is done via the Cluster Head. In
this algorithm, all vehicles in the network are monitored by
the nearest cellular base station. When there are no clusters
formed in a certain area, the base station, depending on
the vehicular density, decides the maximum number of hops
(affecting both cluster size and V2V network performance)
and elects the vehicle that is closest to the geographic center
of the sector as Cluster Head (CH). For clarity, we will call
this one the Fairness Agnostic Algorithm. The problem
with this approach is that, since the CH is the only one to
bear the cost in terms of cellular quota consumption at a
given moment, this can lead to unfair cost distribution, which
may become socially unacceptable. Therefore, the presented
contribution aims to provide a Fairness-Aware Algorithm,
which addresses this issue.

We propose a practical mapping of our problem of dis-
tributing the cost of the cellular network access among the
clustered vehicles in terms of Rescher’s seven canons (since
the seventh canon is not translatable to any term of merit or
achievement in our case since there are no such concepts in
our problem, we are focusing only on the first six, merging
two of them that become equivalent). This way, we create
five criteria that constitute five total orders of the vehicles in
a cluster region, that are subsequently used for deciding who
has to be the Cluster Head. According to each canon, these
are the methods to determine the order in which vehicles
should be elected as CH:

o The canon of equality: In decreasing order of volume
of data previously received as a Cluster Member;

o The canon of needs: In increasing order of the inverse
of the available cellular quota (1/AvailableQuota);

o The canon of productivity: In increasing order of
volume of data previously shared as Cluster Head;

o The canons of effort / social utility: In increasing
order of the number of times having previously served
as Cluster Head;



o The canon of supply and demand: In decreasing order
of non-compliance events (for instance, switching off the
data connection while occupying the Cluster Head role).

The data needed to calculate all five total orders for a group
of vehicles is instantly available for the cellular base station,
which is, in our model, the one that has the ultimate decision
on who will be proclaimed as CH.

Each vehicle, however, has the knowledge of all the
specific metrics for itself only, and can thus deduce which
criteria are more favorable to its situation. Each vehicle then
has the opportunity to demand to be judged by the most
urgent claim it has (for example, if it has been elected CH
too many times, or if it has a very low available quota, it can
demand these criteria to have a higher importance), when
all the vehicles in a cluster region will cast a vote that will
result in the weights of each canon for this group of vehicles
in particular. The base station, aware of this result, establishes
a weighed Borda [6] election: each canon acts as one Borda
voter. For instance, according to the canon of Equality, the
order of priority for being elected as CH could be “I) Vehicle
A; 2) Vehicle B; 3) Vehicle C” while the canon of needs could
determine “I) Vehicle B; 2) Vehicle C; 3) Vehicle A”. If equal
weights are assumed here, Vehicle B would be elected as CH.

The final decision is then made this way:

1) The base station discovers a clustering region without
Cluster Head and requests the vehicles in the area to
cast a vote;

2) Vehicles estimate the canon that is most favorable to
them and vote for it locally. Each vehicle can cast
only one vote, for only one canon. Since we have five
criteria, the vote of vehicle i will be a vector vy of five
elements, with one element equal to 1, and the rest
equal to zero?;

3) The outcome of the vote is the set of weights for each
canon, determined by the cellular base station after
receiving the votes. The weight of the canon j will
be determined by the following formula:
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where N, is the number of vehicles in the clustering

sector;

4) The cellular base station calculates the total orders
associated to each canon;

5) The cellular base station runs the weighed Borda elec-
tion, by applying the weight coefficient to each Borda
vote emitted by each canon;

6) The cellular base station applies a final correction to
the total order obtained from the Borda election: a
normalization lowering the score for being elected as
CH as the vehicle’s distance from the center of the
clustering region increases.

“Different voting systems could also be implemented. Another option
could be assigning all integral values from 1 to 5 in each of the vector’s
position, resulting in a nested Borda vote.

7) The notification is sent to the designated Cluster Head.

It is important to note that, when passing from one base
station to another, the clusters remain formed as they are.
Only when there is no cluster head in a clustering sector,
a new CH election will take place. And when this happens,
any base station has access to the same up-to-date informa-
tion about every user’s account information in the mobile
operator’s system. Thus, there is no way that passing from
one base station to another could affect fairness.

IV. SIMULATIONS AND RESULTS

A. Simulation settings

Our algorithms are implemented in the Veins simulation
framework, which synchronizes a traffic simulator (SUMO
[7]) and a full-stack network simulator (OMNeT++ [8]). The
experiment that we ran for testing the proposed algorithm
consists of a group of 100 vehicles that pass through a 10
km highway segment, for approximately 100 times each,
with randomized order of re-entrance. The simulated access
protocol in the V2V network is IEEE 802.11p. The protocol
for the network and transport layers is IEEE 1609.3. In the
application layer we implement the Cooperative Awareness
Messages (CAM) from the European ETSI ITS G5 standard.
The path loss follows a Two-Ray Interference model [9].

In the curves that follow, where time is represented in the
horizontal axis, it refers to the simulated time, where the 100
vehicles randomly re-enter with a precise inter-arrival time.
This is thus the equivalent of the time that it would take for
10,000 vehicles to traverse the 10 km highway segment, with
an uniform inter-arrival time.

B. Vehicles having served as CH

The most remarkable outcome of introducing distributive
justice in the long term is that the role of Cluster Head,
which seems like a temporary burden, will be taken by a
greater proportion of the participants if we analyze successive
samples over time.

In Figure 1 we can see how the curve of the number
of vehicles having been Cluster Head rises much faster
when using the Fairness Aware Algorithm: after less than
4 simulated hours, all of the vehicles have taken the CH
role at least once. In contrast, with the Fairness Agnostic
Algorithm, it is only after more than 12 hours that we reach
the same result.

On the other hand, we have to analyze how many times the
same vehicle has been elected as CH. Reducing the amount
of times that a specific user takes this role is an important
way for improving the user’s perception of justice. In Figure
2 we can observe the evolution of the maximum number of
times that a specific vehicle has been elected CH. We see that,
for the maximum value, the Fairness Agnostic Algorithm is
always in a situation of almost doubling its counterpart.
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Fig. 1: Number of vehicles having served as CH at least
once, in function of time.
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Fig. 2: Maximum number of times that any one vehicle has
served as CH in function of time.

The box-plot® in Figure 3 shows the distribution of CH
assignments across vehicles, over time. Regardless of the
time passing, the size of the boxes of the Fairness Aware
Algorithm remain small and don’t change their size. Their
whiskers are usually tiny or non-existent. This means that,
even if the average number of times that vehicles in general
serve as CH increases with time (which is necessary), all of
the vehicles serve approximately the same amount of times
as CH. On the other hand, for the Fairness Agnostic boxes,
their size increases, and the whiskers keep getting bigger,
showing extreme disparities between the participants.

The effect in the long term can be seen in the “final
picture” of Figure 4 where we can see the histogram of the
number of times that every vehicle has served as CH when
the end of the simulation is reached. We see an significant
dispersion between values ranging from 4 to 20 for the
Fairness Agnostic Algorithm, while for its Aware counterpart,

3In the box plots in this article, the solid band represents the median
(second quartile), while the box is delimited by the first and third quartiles.
The whiskers mark the lowest and highest datum still within 1.5 Inter-
quartile Range (IQR) of the lower and upper quartiles, respectively. The
outliers are marked as circles.
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Fig. 3: Box plot showing the distribution of the number
of times that every vehicle has served as CH, for both
algorithms, over time.
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Fig. 4: Histogram of the final number of times that any one
vehicle has served as CH.

almost 60% of the vehicles served exactly 11 times as CH,
while the other 40% did so either 10 or 12 times.

C. Cellular quota consumption

The differences in the outcome of the Cluster Head elec-
tion that we have just discussed in the previous point, has
a direct impact on cellular quota consumption. We will now
see some examples of the different distribution of the cellular
quota usage with both algorithms, which translates almost
directly into different economic costs.

1) A better worst case: We start by analyzing the case
of our most unfavoured user for both algorithms in Figure 5.
This curve shows the lowest individual available quota among
the vehicles who have been CH, over time. We can see a
pronounced difference in the slopes. This means that even the
most unfavoured participant will always be much better off,
in terms of economic cost, with the Fairness Aware Algorithm
than with the agnostic one.

2) A fair distribution: Let us now see the impact on the
available quotas of all vehicles (including those that have not
been CH at a given moment). Figure 6 shows the box plot
of the available quotas of all vehicles over time. Once again,
the Fairness Aware Algorithm’s boxes and whiskers remain
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Fig. 6: Box plot showing the distribution of the available
cellular network quota for every vehicle, for both algorithms,
over time.

always small, tightly following the straight line of the global
average data consumption. On the other hand, the distribution
of the quota consumption (and hence the economic cost) in
the Fairness Agnostic Algorithm becomes more unfair with
time, with major deviations from the median.

The clear final picture of the situation can be seen in the
histogram of Figure 7, where we can see that for the Fairness
Aware Algorithm, all 100 vehicles fit in a very tight range
of final quotas, while for its Agnostic counterpart, they are
distributed in a much broader range of possible final quotas,
with just a few vehicles in each bin.

D. Similar elections

The Fairness Agnostic Algorithm has only one possible
outcome for every CH election: the vehicle which is closer to
the geometric center of the clustering sector. For the Fairness
Aware Algorithm, this criterion is merely one amongst several
choices (though it has a special weight, being considered in
a second phase of the election process). Figure 8 shows the
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Fig. 7: Histogram of the final available cellular quotas among
the vehicles having served as CH.
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Fig. 8: Total number of CH elections in both algorithms,
compared to the number of elections in which the Fairness
Aware Algorithm and the Fairness Agnostic Algorithm make
the same choice: the vehicle in the geometric center of the
clustering sector.

proportion of elections that share the same result in both
algorithms: those where the “central” vehicle is elected. The
solid line represents the number of CH elections taking place
over time, while the dashed red line shows the number of
elections in the Fairness Aware Algorithm that result in the
central vehicle being elected. It is interesting to see that in
both algorithms, the number of elections over time remains
the same, and that the slight deviation from the original
algorithm’s geometry implied by not always electing the
central vehicle does not have an impact on the number of
elections. On the other hand, the proportion of elections
having the outcome of electing the central vehicle for the
Fairness Agnostic Algorithm is, trivially, equal to the number
of elections.

E. Network performance

The original (Fairness Agnostic) clustering algorithm
aimed to self-adapt the size of the clusters in order to
keep an optimal balance in terms of network performance:
maximizing data compression in the cellular network (and



—-
[=]
o

1]
[=]

=1}
o

Cellular Compression Ratio (%)
=l
=

60
50 F. Aware
F. Agnostic
40
5 10 15 20 25 30
Time (h)
(a)
35
F. Aware

=y 30 F. Agnostic
T 25
m
& 29
1]
[72]
Sas
©
= 10
[1v]
('8

5

1]

5 10 15 20 25 30
Time (h)
(b)

Fig. 9: Comparison between the Fairness Aware and Fairness
Agnostic algorithms, regarding: (a) Data compression ratio on
the cellular network link over (simulated) time. (b) Packet
loss ratio (PLR) on the V2V network. The results show that
incorporating fairness improvements does not have a cost in
the network performance metrics that the Fairness Agnostic
algorithm was designed for.

thus reducing economic cost) while limiting the Packet Loss
Rate (PLR) in the V2V network, to a maximum acceptable
threshold of 10%. We could expect that modifying the
geometry and criteria of the election process could affect the
metrics that this algorithm was designed for. Figures 9a and
9b compare both algorithms in terms of data compression and
PLR, respectively. As we can clearly see, the improvements
in distributive justice come at no cost in terms of network
performance.

V. CONCLUSIONS AND FUTURE WORK

We have presented a Fairness Aware Election Algorithm
based on the theory of distributive justice. This solution aims
to address the problem of social acceptability of clustering al-
gorithms, where the individuals elected as Cluster Heads bear
all the costs. We have applied this approach to our previous
work on a specific self-adaptive clustering algorithm, con-
ceived for reducing cellular access costs by only communicat-
ing aggregated data via the CH, while limiting overheads onto

the V2V network. The previous algorithm was effective in
terms of global data compression and network performance,
but unfair with respect to CH elections and hence to the cost
distribution across system users (and since a driver can keep
track of its quota consumption, it could act as a motivation
to leave the system, potentially leading to a collapse). In
contrast, the proposed fairness-aware algorithm enables ve-
hicles to influence CH elections by expressing their legitimate
claims via voting (based on a Borda-type vote). Numerical
simulations showed that this approach significantly improves
fairness across all vehicles, over time (analysis based on
several metrics that a regular user would most likely analyze
when elaborating its own perception of justice). Meanwhile,
simulations also showed that the fairness-aware algorithm
preserves all network performance optimisations achieved by
its fairness-agnostic counterpart.

We aim to design a system for cluster-based vehicular
networks that follows Elinor Ostrom’s [3] design principles
for managing commons. These principles ensure that a re-
source endures, being governed equitably and sustainably.
Our algorithm currently follows some of these principles.
The vote of the participant vehicles (P1) for determining
the weight of each legitimate claim in the CH election is
a way for them to be involved in the rule-making process.
The groups have clearly limited boundaries (P1). Even one
of our criteria (taking into account non-compliance events)
gets close to the gradual sanctioning required in Ostrom’s
principles (P6). In future work, it would be interesting
to consolidate the monitoring and sanctioning required by
Ostrom, and explore possible comparisons of the Fairness
Aware Algorithm with other existing methods that may be
adapted to this problem.

REFERENCES

[1] J. Garbiso, A. Diaconescu, M. Coupechoux, and B. Leroy, “Dynamic
cluster size optimization in hybrid cellular-vehicular networks,” in
Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International
Conference on. 1EEE, 2016, pp. 557-563.

, “Auto-adaptive multi-hop clustering for hybrid cellular-vehicular

networks,” in Intelligent Transportation Systems (ITSC), 2017 IEEE 20th

International Conference on. 1EEE, 2017.

E. Ostrom, R. Gardner, and J. Walker, Rules, games, and common-pool

resources. University of Michigan Press, 1994.

J. Pitt, D. Busquets, and S. Macbeth, “Distributive justice for self-

organised common-pool resource management,” ACM Transactions on

Autonomous and Adaptive Systems (TAAS), vol. 9, no. 3, p. 14, 2014.

[5] N. Rescher, Fairness: Theory and practice of distributive justice. Trans-
action Publishers, 2002.

[6] J.-C. de Borda, “Mémoire sur les élections au scrutin, histoire de
I’académie royale des sciences,” Paris, France, 1781.

[71 M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo—

simulation of urban mobility,” in The Third International Conference

on Advances in System Simulation (SIMUL 2011), Barcelona, Spain,

2011.

A. Varga, “Discrete event simulation system,” in Proc. of the European

Simulation Multiconference (ESM’2001), 2001.

[9] C. Sommer, S. Joerer, and F. Dressler, “On the Applicability of Two-
Ray Path Loss Models for Vehicular Network Simulation,” in 4th IEEE
Vehicular Networking Conference (VNC 2012). Seoul, Korea: IEEE,
November 2012, pp. 64-69.

(2]

3

—_

[4

—_

[8

—_



