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Cost-constrained Viterbi Algorithm
for Resource Allocation in Solar Base Stations

Viet Hung Tran and Marceau Coupechoux

Abstract—Solar energy is currently a popular renewable re-
source, yet limited daily. In green cellular networks, multiple
constraints optimization (MCO) problems arise naturally. For
example, a typical objective is to control the power transmission
of hybrid base stations (connected to both solar panels and
electrical grid) in order to maximize user’s average throughput,
under the constraints of consumed grid energy and user’s block-
ing rate. However, such problems have been generally proved
to be NP-hard. In this paper, we formulate this generic MCO
problem as a quantized Markovian cost-reward model, with no
assumption on input data. We then propose a novel algorithm,
namely Cost-constrained Viterbi Algorithm, which recursively
returns the optimal policy with linear computational complexity
for this model. As an application, we provide engineering rules for
the design of hybrid base stations through extensive simulations.
In comparison with brute force method for a simple scenario,
we find that our algorithm does achieve the constrained optimal
policy.

Index Terms—Constrained optimization, Viterbi algorithm,
energy harvesting, cellular networks, hybrid base station.

I. INTRODUCTION

Renewable energy has been widely considered as next-
generation technology for mobile networks [1]. Solar energy
in particular offers very good advantages as it is predictable
and solar panels are now available at affordable price, with
low impact on the environment. The harvested solar energy
is however sharply varying during the day time and is daily
constrained. Moreover, there is an hourly mismatch in general
between the mobile user’s traffic and the incoming solar
energy. This mismatch might drain out solar panel’s battery
at the time of high traffic, while preserving too much energy
at the time of low traffic.

In this paper, we consider a hybrid base station (BS),
connected to solar panels and the national electrical grid.
For countering the mismatch between harvesting energy and
user’s traffic processes, we allow the BS to control its transmit
power PTX along the day such that the Quality of Service
(QoS) is maximized. We impose a constraint on the amount
of energy to be taken from the grid, and possibly on the
maximum user blocking rate. To solve this constrained op-
timization problem, we propose a novel algorithm, namely
Cost-constrained Viterbi Algorithm (CVA), which recursively
returns the constrained optimal policy for transmit power’s
control with linear computational complexity. We illustrate
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the CVA’s performance in realistic scenarios of solar BSs
and European user’s traffic. Note that, because we impose no
assumption on data model at the input, CVA also works for
arbitrary renewable energy process (for example wind energy
[2]).

A. Related Work

Because BSs take more than 50% of operating power
of a cellular network [3], several constrained optimization
problems involving energy consumption have been studied in
recent literature. For example in [4], the optimal criterion is
a weighted combination of the consumed grid energy and of
the number of dropped packets, while the constraint is the
maximum transmitted power. In [5], the optimal criterion is
energy efficiency, while the constraints are consumed grid
energy and user’s data throughput. In [6], the constraints are
transmitted data rate and battery size while consumed grid
energy is minimized. In [7], the constraints are defined as
user’s blocking rate and user’s data throughput while optimal
criterion is to minimize consumed grid energy. In [8], [9], the
problem is formulated as sum-rate maximization problem, in
which QoS is defined as user’s average throughput and the
constraint is consumed energy.

Unfortunately, the sum-rate maximization was proved to be
an NP-hard problem in general [3], [4], [10]. To overcome
the complexity issue, several papers propose heuristics, e.g. in
[3], [5], [11]. They however do not provide any guarantee on
the optimality of the proposed solution. Another approach is
to transform the original problem into a convex optimization
problem. However, this idea is only feasible in simplistic
system models. For example in [5], [6], [8], [9], the convexity
for constrained sum-rate was achieved, but without consider-
ing data traffic process and user’s admission control. Lastly,
dynamic programming via discrete Markov Decision Process
(MDP) were proposed in [4], [7]. With MDP, the curse of
dimensionality remains and requires Markovian models, for
example, for traffic or harvested energy [6].

Our MCO problem can also be seen as a special case of
the Constrained Shortest Path (CSP) problem in graph theory.
CSP problem was proved to be NP-hard [12] and, hence,
currently has to rely on heuristics or discretization forms of
dynamic programming [12], [13]. Our graph is however a
tree because we assumed continuous cost-reward values and
thus there are in general no two paths reaching the same
node. As a consequence, the current recursive CSP algorithms
cannot be efficiently applied to our model. In contrast, we
propose a quantization step in CVA, which merely merges
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close vertices and extracts a representative path among the
paths reaching these vertices. In other words, CVA groups
at each step close-by trajectories and extracts one such that
the difference with others can be arbitrarily made small as
the number of quantization levels increases. This step is not
a rounding as done in recursive CSP algorithms so that the
exact value of the path can be returned. This path extraction
is the key step to extend CVA from one constraint to multiple
constraints with the same computational complexity.

In broader context, our MCO problem is also a special
case of constrained MDP problem [14]–[17]. Unlike our CVA,
however, the state-of-the-art techniques for solving constrained
MDP are based on Lagrangian linear programing, whose
computational complexity in this case is inefficient in practice
[16], [17]. For faster computation, a Lagrangian dynamic
programing method was recently proposed (c.f. [14], [15]), in
which linear programming was replaced by dynamic program-
ming in solving Lagrangian unconstrained MDP equations.
Nevertheless, the computational complexity of this method
is at least a polynomial function dependent on number of
constraints and magnitude of cost-reward values [17] and,
hence, is very high in practice.

Our CVA can also be considered as a special case of
constrained Viterbi algorithms, which were scarcely proposed
in inference and decoding context (e.g. in [18], [19]). These
algorithms in literature merely differ from traditional Viterbi
algorithm by one extra step of validating constraints upon
edges of a given Markov chain. In contrast, our CVA does
not truncate violating edges on a given Markov chain, but
makes truncation (together with quantization and constraint’s
validation) a part of establishing Markov chain process.

B. Contributions and Organization

Compared to the literature, we consider a generic multiple
constraints optimization (MCO) problem with no assumption
on input data. We propose a novel formulation of this problem,
namely quantized Markovian cost-reward. This allows us to
formulate any deterministic or probabilistic problem, where
both optimal reward and constraint costs are independently
accumulated over time. For example, all accumulated reward
and cost based on Lp-norm fall in this framework. This
generalization makes all models proposed in above cited works
on hybrid BS become its special cases.

In our approach, we rely on quantization, which yields the
optimal solution when quantized intervals tends to zero [10].
The drawback is that, however, the number of quantized levels
for MCO problem will grow exponentially in this case, which
yields impractical computational complexity. In order to avoid
this complexity, we adapt the famous Viterbi algorithm in de-
coding literature to this quantized Markovian model and return
the globally constrained optimal trajectory. Owing to this novel
algorithm, namely Cost-constrained Viterbi Algorithm, it is
sufficient to only quantize one out of multiple constraints in
order to asymptotically achieve the optimal policy for original
model. Furthermore, the computational complexity of CVA
only grows linearly with the number of quantization levels
and time points, which makes it completely tractable. This

approach is in contrast to the state-of-the-art dynamic pro-
gramming techniques, which consider the Cartesian product
of quantized values of constrained variables and thus see their
complexity grow exponentially with the number of variables.
To the best of our knowledge, this is the first time Viterbi
algorithm is applied to MCO problem.

As an application of CVA in this paper, our aim is to
maximize user’s average throughput, subject to constraints of
both consumed grid energy and user’s average blocking rate in
hybrid BS. We show that our aim is equivalent to maximizing
the L1-norm of user’s throughputs over time, subject to two
constraints. The first constraint is L∞-norm between accumu-
lated renewable energy and accumulated station’s operating
energy. The second constraint is L1-norm of user’s blocking
rates over time.

In summary, this paper strives for both theoretical and
practical solutions to constrained optimization of resource
allocation. The contributions are as follows:
• A novel formulation for constrained optimization prob-

lem, namely quantized Markovian cost-reward is pro-
vided. This formulation is flexible and applicable to both
continuous and discrete Markovian cost-rewards, whose
special case is based on Lp-norm.

• We then design a novel algorithm CVA, whose contri-
bution is twofold. On one hand, it recursively returns an
approximated constrained optimization solution, whose
error is arbitrarily small up to quantization level. On
the other hand, its computational complexity only grows
linearly with coming data, owing to its recursive quanti-
zation scheme.

• For the first time, an Lp-norm formulation is provided
for energy process in a hybrid BS. Owing to this formu-
lation, our constrained resource allocation problem can
be recognized as special case of Markovian cost-reward
system, for which CVA can be efficiently used.

• Our simulation is carefully calibrated to fit practical
scenarios of a hybrid macro BS in LTE system. The key
factors in designing a practical solar BS, e.g. solar panel
size, necessary maximum power transmission, optimal
trade-off between QoS and consumed power, etc., are
illustrated and discussed. Hence, simulation results are of
practical use in solar BS design. For example, in reference
scenario for solar macro BS in European urban area,
40% of BS’s consumed energy can be typically saved by
controling PTX according to CVA, in comparison with
traditional fixed PTX scheme.

• A novel iterative CVA scheme is also proposed for a solar
BS network. This iterative scheme, which essentially
applies CVA to each BS in a network one-by-one, always
converges to local maximum of total reward for the
whole network, under the same set of constraints of each
BS. Owing to this decentralized approach, iterative CVA
is able to optimally reduce (possibly switch-off) BSs’
interference power, achieving both lower grid consumed
energy and higher QoS in the network. For example, our
simulation shows that, iterative CVA can save up to 85%
of consumed grid energy in typical scenario of hexagonal
BSs, given the same QoS constraint of fixed PTX scheme.



3

As CVA can be applied to a broader context than hybrid
BS, we first present the theoretical part before focusing on
the application. As a consequence, the paper is organized
as follows: Section II presents the Markovian approach and
CVA for MCO problem in generic form. Section III introduces
the mathematical model for solar mobile station. Section IV
illustrates the optimality of CVA via simulation. The paper is
concluded in section V.

II. MULTIPLE CONSTRAINTS OPTIMIZATION PROBLEM

In this section, we propose a Markovian formulation for
solving an MCO problem and present our algorithm.

A. Constrained optimization objective

Let us consider a policy πi , {a1, a2, . . . , ai} ∈ Ai, in
which each action ai belongs to the same finite action set
A and the set Πi , Ai is called the policy space up to time
point i = 1, 2, . . . , N . Let us denote card(·) as cardinal number
operator and define K , card(A).

We assume that actions generate a sequence of independent
rewards and costs. In this typical memoryless system, let us
associate with each action ai a pair {bi, ci} of scalar reward
bi , bi(ai) : A → R and an L-dimensional vector of cost
ci = [c1,i, . . . , cL,i]

′ , ci(ai) : A → RL. Let us denote
{vi, ui} ∈ RL+1 the pair of scalar accumulated reward vi and
an L-dimensional vector of accumulated cost ui, up to time
point i, as follows:

vi , v(πi) =

i∑
j=1

bj(aj),

ui , u(πi) =

i∑
j=1

cj(aj),

(1)

where v(πi) : Ai → R and u(πi) : Ai → RL.
Note that the notations ui = [u1,i, . . . , uL,i]

′ , u(πi) =
[u1(πi), . . . , uL(πi)]

′ in (1) are element-wise, as follows:
ul,i , ul(πi) =

∑i
j=1 cl,j(aj), l = 1, 2, . . . , L.

Let us first define π∗N as the optimal policy for non-
constraint case, i.e., π∗N = argmax πN∈ΠN v(πN ). Owing to
independence and additivity in (1), the solution of the non-
constraint case can be easily found, i.e., π∗N = {a∗1, . . . , a∗N}
and ∀i, a∗i = argmax ai∈A b(ai).

In an MCO problem with threshold τ , the solution is much
harder to find. The objective is to find the constrained optimal
policy π

∗(τ)
N , which maximizes the accumulated reward over

a finite horizon, subject to L constrained conditions:

π
∗(τ)
N = argmax

πN∈Π
(τ)
N : τ1≤u(πN )≤τ2

v(πN ),

with πN ∈ Π
(τ)
N :


τ1,1 ≤ u1(πN ) ≤ τ1,2
...
τL,1 ≤ uL(πN ) ≤ τL,2

, (2)

where Π
(τ)
N denotes the constrained subspace in policy space

ΠN , the two L-dimensional vectors of thresholds τ =

Figure 1. Markovian recursions for independent cost-reward scheme. Param-
eter τ denotes constrained threshold.

Figure 2. Venn diagram for constrained optimization space. ΠN is the set
of unconstrained policies, Π

(τ)
N is the set of constrained policies and Π̂

(τ)
N is

the set of policies explored by CVA. In every set, there is an optimal policy
represented by the dots.

{τ1, τ2} ∈ RL×RL are lower and upper bound of constraints,
respectively, and inequalities are element-wise. This problem
can be illustrated via Venn diagram in Fig. 2.

B. Curse of dimensionality

In this constrained case, we can see that the action a
(τ)
i

has to belong to a constrained action set A(τ)
i ⊆ A at

time i, such that the policy π
(τ)
N = {a(τ)

1 , . . . , a
(τ)
N } ∈ Π

(τ)
N

satisfies the constraint (2). Hence, in general, the choice
of a

(τ)
i depends on both constrained policies in the past,

π
(τ)
i−1 ∈ Π

(τ)
i−1, and future, π(τ)

i+1:N ∈ Π
(τ)
i+1:N . Owing to this lack

of independence property, the constrained optimal policy (2)
can only be found brute-forcedly at time N , after computing
and verifying all KN values of πN with the constraint in (2).
This computational complexity O(KN ) grows exponentially
with time N and, hence, yields the curse of dimensionality for
this constrained optimization problem.

In literature, the exact optimal solution for this constrained
sum-rate problem was also proved to be NP-hard [3], [10].

C. Markov chain formulation

From (1), we can recognize the natural Markovian property
of {vi, ui} as follows:

v(πi) = bi(ai) + v(πi−1),

u(πi) = ci(ai) + u(πi−1),
(3)
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where by convention π0 = ∅, u0 = v0 = 0. The Markovian
model (3) can be illustrated via a directed acyclic graph
(DAG) [20] in Fig. 1.

As explained in subsection II-B, the number of action’s
trajectories1 πi grows exponentially with time-point i. Our idea
is, at each time point, to categorize them into M representative
groups, whose boundaries are defined via quantization method.
As we will see, these M groups will construct an M -states
Markov chain form over time. Note that, this categorization
is not an approximate procedure, but the goal is merely to
reformulate the original Markovian model (3) into a Markov
chain form, which faciliates the reduction step for computa-
tional load in next subsection.

1) Scalar quantization: At each time point i = 1, 2, . . . , N ,
there are L + 1 scalar variables in our MCO problem (2):
the accumulated reward vi and accumulated costs ul,i, with
l = 1, 2, . . . , L. The interesting point is, as we will show
in section II-D, quantizing any one of these L + 1 scalar
quantization is enough to establish a tractable Markovian
recursive model. Hence, let us define a quantization variable
qi ∈ {vi, u1,i, u2,i, . . . , uL,i} to be one of those L + 1 scalar
variables. Note that qi is a function of the chosen policy πi
and can also be written qi , q(πi). At each time point i, let us
quantize scalar value qi into M intervals [q̃k−1,i, q̃k,i), divided
by M + 1 levels q̃i , [q̃0,i, q̃1,i, . . . , q̃M,i]

′ ∈ RM+1, where
q̃0,i < q̃1,i < . . . < q̃M,i.

For fast computation, the quantized values might be set
uniformly at fixed values, or via iterative method like the
well-known Lloyd-Max algorithm [21], [22], which converges
to locally mean-square-error (MSE). However, in our simula-
tions, we found no significative gain in applying Lloyd-Max
algorithm. For simplicity, we present in this paper the uniform
setting, although our simulation results are almost the same
with both Lloyd-Max (non-uniform) and uniform quantization.

At time point i, if card(Πi) = Ki ≤ M , we do not really
need quantization step because the exact values q(πi) for all
values of πi, under sorting technique, can be regarded as levels
themselves. Otherwise, if card(Πi) = Ki > M , at any i, we
can assign:

q̃k,i =


minπi∈Πi q(πi) , k = 0

maxπi∈Πi q(πi) , k = M

q̃0,i + k
M (q̃M,i − q̃0,i) , 0 < k < M

. (4)

Note that, in the case of quantizing scalar constraint value
ul,i = ul(πi), l = 1, 2, . . . , L, the extremum levels q̃0,i and
q̃M,i might be set as thresholds τ1 and τ2 in constraint-space,
instead of minimal and maximal values in (4), respectively.
By this way, the accumulated quantization error is bounded
by τ1 and τ2. However, this online thresholding approach can
only be applied if functional form of ul(πi) is monotonic, as
explained in section II-E.

In practice, choosing which variable should be used for
quantization step generally depends on two factors: its po-
tential reduction on computational load and its potential gain
in the approximation step. From our experience, we noticed
that the quantization of vi may not be preferable with respect

1The words policy and trajectory are interchangeably used in this paper.

to the computational reduction because maximizing operator
in (2) already reduced all values of vi to a single optimal one.

2) Trajectory segmentation: We say that q(πi) belongs
to state k if q(πi) belongs to kth interval [q̃k−1,i, q̃k,i),
k = 1, 2, . . . ,M . By this way, we can divide the policy space
Πi into M separated subspaces πi ∈ Πi = {Π1,i, . . . ,ΠM,i},
in which Πk,i is the set of all trajectories πi = πki ∈ Πk,i

making q(πki ) hit state k at time i. If there is no such trajectory,
we assign Πk,i = ∅. This is similar to the case of Markov
chain with no visited state k at time i. We also divided each
policy subspace Πk,i = {Π1,k,i, . . . ,ΠM,k,i} into further M
separated subspaces, where Πj,k,i is the set of all trajectories
πi = πj,ki hitting state j at time i− 1 and state k at i.

3) Markovian trajectory model: The original Markovian
model (3) can be re-formulated via segmented trajectory
model, as follows:

v(πj,ki ) = bi(a
j,k
i ) + v(πji−1),

u(πj,ki ) = ci(a
j,k
i ) + u(πji−1),

(5)

∀j, k ∈ {1, . . . ,M}, i = 1, 2, . . . , N . Each action aj,ki
represents a transition of policy from state j to state k (i.e.
from πji−1 to πki ), as illustrated in Fig. 3. Let us substitute the
objective function (2) to Markovian trajectory model (5). For
clarity, let us divide this substitution step into three consecutive
sub-steps, as follows:

max
πi

v(πi) = max
k

(
max
πki

v(πki )

)
,

max
πki

v(πki ) = max
j

(
max
πj,ki

v(πj,ki )

)
, (6)

max
πj,ki

v(πj,ki ) = max
πji−1

(
max
aj,ki

bi(a
j,k
i ) + v(πji−1)

)
,

in which j, k ∈ {1, . . . ,M}, i = 1, 2, . . . , N and max-
operators are taken over constrained policy spaces: πi ∈ Π

(τ)
i ,

πki ∈ Π
(τ)
k,i , πj,ki ∈ Π

(τ)
j,k,i and πji−1 ∈ Π

(τ)
j,i−1. Because our

trajectory segmentation via quantization is not an approximate
step, the curse of dimensionality discussed in subsection II-B
remains the same. However, we will use right below this
Markovian formulation to reduce the computational load from
Ki original trajectories up to time i to M by replacing all
trajectories in Πk,i with the best policy at time i in state k.

D. Forward-Backward recursion

In order to achieve a tractable recursion for (6), our idea
is to approximate (6) by bringing operators maxπji−1

into
parentheses via plug-in substitution technique. This means we
reject all policies πi, except a single representative policy π̂i
(see Fig. 2), corresponding to the highest accumulated reward
among remaining policies up to time i. In the same way, we
define π̂ki as the representative policy at state k at time i and
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Figure 3. Quantized trellis diagram for CVA’s Markovian recursions. Quantization variable q can be either accumulated reward v or cost u. Each vertex is a
specific value of q. Each edge is a specific action. The dashed arrows are rejected trajectories. Focusing on the transition between i− 1 and i: all remaining
trajectories reaching state j, i.e. in Πj,i−1, are rejected except the one with highest accumulated reward π̂ji−1. From this vertex, the action leading π̂ji−1 to
state k at time i is âj,ki , such that π̂ki = {âj,ki , π̂ji−1}. All trajectories that violate the constraints are rejected.

π̂j,ki as the representative policy between states j at i− 1 and
k at i. By this way, we achieve the following approximation:

v (π̂i) ≈ max
πi

v(πi),

v
(
π̂ki
)
≈ max

πki

v(πki ), (7)

v(π̂j,ki ) ≈ max
πj,ki

v(πj,ki ).

1) Forward recursion for optimization function: We now
show that the representative policies can be computed recur-
sively. Substituting (7) into (6), we can deduce consecutive
relationships for (7), as follows:

v(π̂i) = max
k

v(π̂ki ),

v(π̂ki ) = max
j
v(π̂j,ki ), (8)

v(π̂j,ki ) = bi(â
j,k
i ) + v(π̂ji−1),

in which π̂j0 = πj0 and then the value v(π̂ki ), k = 1, 2, . . . ,M ,
can be evaluated recursively from v(π̂ji−1) , j = 1, 2, . . . ,M .
For later use, we provide the following definitions:

π̂i , π̂k=k̂i
i ,

π̂ki , π̂
j=ĵi(k),k
i , (9)

π̂j,ki , {âj,ki , π̂ji−1},

together with:

k̂i , argmax
k

v(π̂ki ),

ĵi(k) , argmax
j

v(π̂j,ki ), (10)

âj,ki , argmax
aj,ki

bi(a
j,k
i ).

2) Forward recursion for constraint space: Given the rep-
resentative policies π̂ki found in (9), the forward recursion for
accumulated cost can be feasibly computed, as follows:

u(π̂ki ) = ci(â
j=ĵi(k),k
i ) + u(π̂

j=ĵi(k)
i−1 ), (11)

∀k = 1, 2, . . . ,M , i = 1, 2, . . . , N . At time N , the values
u(π̂kN ), computed via (11), will be used for verifying constraint
condition (2), as shown below.

3) Backward recursion: At time N , the forward recursion
step provides M representative policies π̂kN , k = 1, ...,M ,
from which we return the highest reward policy π̂

(τ)
N not

violating the constraints τ in (2). Policy π̂(τ)
N can be found via

a fast back-tracking step from stored values of reverse jumps
ĵ(k), already computed and memorized in forward step (8-
10). The optimal state jumps will be traced back recursively,
as follows:

k̂∗N = argmax k : u(π̂kN )∈[τ1,τ2]v(π̂kN ),

k̂∗i−1 = ĵi(k̂
∗
i ), i = N, ..., 2. (12)

Finally, from (10), the Viterbi’s constrained optimal policy
π̂

(τ)
N , {â(τ)

1 , ..., â
(τ)
N } in (2) is:

â
(τ)
i = â

j=ĵi(k̂
∗
i ),k=k̂∗i

i . (13)

If there is no k satisfying the condition on u in (12), it means
that CVA could not find any policy satisfying the constraint
condition (2).

4) Complexity: The complexity of the linear quantization
step is O(MN) for N time points (see section II-C1). The
complexity of the forward recursion step (8-10) is O(KMN),
since total number of forward transitions that need updating
at each time is O(KM). Owing to fast memory-retrieving
step, the complexity of the backward recursion is O(N). The
complexity of CVA is hence O(KMN), which is dominated
by that of forward recursion.
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E. Monotonic constraint class

There is a special class of constraints, in which the accuracy
of the CVA solution increases by exponentially reducing the
number of explored policies. Indeed, if constraints are mono-
tonic, at any time point i, we can reject trajectories that violate
the constraints without being forced to wait until the end of
the horizon for rejecting such trajectories. More formally, by
definition, the accumulated cost u is called monotonic if it
either never decreases nor increases:

u(π1) ≤ . . . ≤ u(πN ) or u(π1) ≥ . . . ≥ u(πN ), (14)

in which, by our convention, the inequalities are element-wise
for all L-dimensional vectors u(πi), ∀i. Assuming without loss
of generality the non-decreasing property (14), the constraint
(2) can be found violated immediately if, at any time i =
1, 2, . . . , N , we find that u(πi) > τ2 for some specific πi.

From this remark, we can verify the constraint (2) in tandem
with forward recursion of optimization function (8). For later
use, let us consider three examples of monotonic constraints.
Firstly, if the cost ci is always non-negative or non-positive,
the accumulated cost satisfies the monotonic property (14).
Secondly, a special case of the first is when the accumulated
cost can be written as the Lp-norm of the cost vector: ui =∑i
j=1 |cj |

p. The third example is when ui takes the form of
a maximum of the sequence of possibly negative costs:

ui = max(ci, . . . , c1)

= max(ci,max(ci−1, . . . ,max(c2, c1))) (15)
= ci � ci−1 � · · ·� c1,

where x � y , max(x, y) and max operator is element-
wise for vectors. Written in this way, ui still appears as an
accumulated cost because the max is a special case of ring-
sum in ring theory [23], [24]. Note that this form includes the
classical L∞-norm.

F. Pseudo-code of Cost-constrained Viterbi Algorithm

In literature, the traditional Viterbi algorithm [24], [25]
involves two steps: the first step is to define a max-recursion
similar to (8-10), the second step is the back-tracking step
similar to (12). The key differences in CVA are the plug-in
substitution (7) and the constraint verification step (11,14). We
provide the pseudo-code of CVA in Algorithm 1.

III. CONSTRAINED RESOURCE ALLOCATION FOR
SOLAR BASE STATION

A. System model

In this section, we consider a solar BS as an input-output
system (see Fig. 4a). The consumed energy of the BS at the
input comes from either solar battery system or electricity grid.
The BS consumes in priority the solar energy stored in the
battery. At the output, the BS’s transmitted power will affect
the user’s QoS. Because cellular operators have to pay for grid
energy, its amount of usage is desired to be kept under a daily
threshold, while QoS needs to be maximized.

Algorithm 1 Cost-constrained Viterbi Algorithm
Inputs:
- a set of actions a ∈ A over K choices.
- the reward-cost b, c upon action (Fig. 1)
- constraint thresholds {τ1, τ2}
Precompute:
- pick quantization variable q (section II-C1)
- set number M of quantization levels
Forward recursion:
For i = 1, 2, . . . , N {
- evaluate linear quantization (4)
- evaluate plug-in substitution (7)
- verify constraint condition (11,14)
- evaluate max-recursion (8-10)}
Backward recursion:
For i = N, . . . , 1 {
- evaluate back-tracking from memory (12)}
Output:
- return the approximate (13) for constrained optimal policy (2)
Computational complexity: O(KMN)

1) Energy process: For studying energy process in BS, let
us define the following notations:
• t: time (in hours)
• PV : harvested solar power, i.e., output power of photo-

voltaic (PV) panel
• PBS : BS’s operational power, an affine function of the

transmitted power PTX
• EG: accumulated energy taken from grid EG(t) ≥ 0
• EB : accumulated energy stored in battery, EB(t) ≥ 0
• E0: initial energy stored in battery, i.e. E0 = EB(0) ≥ 0
• EV : accumulated harvested solar energy, i.e. EV (t) =∫ t

0
PV (t)dt

• EBS : accumulated BS’s operational energy, i.e.
EBS(t) =

∫ t
0
PBS(t)dt

• EU : accumulated saving energy level, EU (t) , E0 +
EV (t) − EBS(t), i.e., the difference between input and
output energy

A typical process is illustrated in Fig. 4b. We have the
following relationship:

dEU (t)

dt
=

{
dEB(t)
dt , if EU (t) > Emin(t),

−dEG(t)
dt , if EU (t) = Emin(t),

(16)

in which dEU (t)
dt = PV (t) − PBS(t), the reference point

is defined as Emin(t) , [min0≤ω≤tEU (ω)]− with operator
[x]− , min(0, x), and we start with initial energy E0 stored
in battery at t = 0, i.e., EU (0) = E0 ≥ 0. The explanation of
(16) is given as follows:
• The case EU (t) > 0: Because from 0 to t the system

harvested more energy than it consumed, the grid is not
active at time t. Hence, at that time the BS’s energy comes
only from the battery, i.e. dEU (t)

dt = dEB(t)
dt . Also, battery

is charged if dEU (t)
dt ≥ 0 and discharged if dEU (t)

dt < 0.
By definition, EU (t) > 0 ≥ Emin(t) in this case.

• The case EU (t) ≤ 0: Because from 0 to t the energy
process is deficient, the BS has consumed some energy
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Figure 4. (a) Solar base station model. (b) Illustrative example for power and energy processes. Harvested energy is maximum at noon. There are peaks of
user’s traffic corresponding to peaks of PTX . Both EG, the total energy taken from the grid, and EB , the battery energy level, are computed with respect to
Emin, the minimum of the non-positive part of EU . E0 is battery’s initial energy. (c) Average solar irradiance estimated for Rome and average percentage
χ(%) of active subscribers in Europe.

from the grid up to the time t0 ∈ [0, t] where EU (t0) =
Emin(t0). If t0 < t and therefore EU (t) > Emin(t),
more energy has been harvested than consumed in the
interval [t0, t]. Thus, the BS consumes energy from the
battery and this case is similar to the first one. If t0 = t,
then EU (t) is decreasing such that EU (t) = Emin(t), the
system keeps setting up new reference point and, hence,
the grid is active, i.e., dEU (t)

dt = −dEG(t)
dt .

By integration of (16), this formulation is equivalent to:

EG(t) = |Emin(t)| , (17)
EB(t) = EU (t) + |Emin(t)| .

In literature, the above energy process was studied for the
case of EU (t) > 0 in [11], in which the grid is not available.
To the best of our knowledge, this is the first time reference
point concept Emin is applied to evaluation of both EG and
EB . In Fig. 4b, we also illustrate the case of limited battery
with capacity E∗B by dotted version of EU process, called E∗U .

In the case of unlimited battery, the EU process keeps going
up at the time of charging battery dEU (t)

dt ≥ 0. In contrast, E∗U
stays constant after battery energy level EB reaches its limit
at E∗B , and all harvested solar energy during this period will
be lost. During the time of discharging battery, however, both
EU and E∗U processes decrease with the same rate, hence the
same decreasing slope during this period. Limited battery may
or may not increase the consumed energy from the grid. If E∗B
is too low, the E∗U process may go below the reference point
Emin of EU and, hence, extra grid energy is required. On the
contrary, if E∗B is high enough, E∗U process will not set up a
new reference point Emin and, hence, no extra grid energy is
consumed.

2) Harvested energy model: In this section, we compute
PV . Let us assume that photovoltaic (PV) panel is set up
parallel with earth’s surface. We then employ the well-known
Hottel’s [26] and Liu-Jordan’s [27] models in order to estimate
solar irradiance G (in W/m2) perpendicular to earth’s surface,

at any time during a day and at any place on earth, as follows
[28]–[30]:

PV = ζPsolar = ζG×AV , (18)
G = GET × (0.271 + 0.706β) [cos(θz)]

+
,

in which the generated electric power PV of PV is proportional
to absorbed solar power Psolar, AV is PV panel’s area (in m2),
θz is the solar zenith angle and [x]+ , max(0, x).

In state-of-the-art PV modules, solar efficiency ζ varies
from about 10% to about 30% at standard condition [31].
For detail calculation of ζ = IP×VP

G , in which IP and VP
are respectively current and voltage in operation of PV mod-
ule, we will employ the characteristics IP -VP of simplified
single-diode circuit of semiconductor PV module [32], [33].
The reason is that calculation for this simplified circuit is
tractable and only requires PV module’s parameters at standard
condition, which are available in most of manufacturer’s data-
sheet. Owing to availability of maximum power point tracking
(MPPT) algorithms in commercial products [34], let us assume
that VP = VMPP , where VMPP is standard maximum power
point voltage, given by manufacturer’s datasheet. Then, from
Photowatt PW1650-24V datasheet and formula IP of solar
single-diode circuit, both given in [32], the theoretical solar
coefficient for PW1650-24V is ζ = 17.52%. We use this value
of ζ in our simulations.

The Hottel’s atmospheric transmittance β is a function of
θz and local altitude H (in km). For calculation of β, we will
apply the empirical Hottel’s 23 km visibility haze model, given
in [26], [30], which is reasonable for PV panel set up on top
of buildings in a city. The extra-terrestrial solar irradiance,
GET , GET (Υ ), is a function of day number of the year
Υ ∈ {1, . . . , 365}, as given in [30], [35]. The value of cos(θz)
can be geometrically calculated via day number Υ , latitude φ,
longitude ϕ and time-zone TGMT , as given in [28], [35]. Let
us consider the case of Rome, Italy on 15th August. Substi-
tuting {φ, ϕ,H, TGMT , Υ} = {420, 12.50, 0.024, 1, 227} into
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formulae in above cited references, we can feasibly calculate
hourly values of G via (18), as plotted in Fig. 4c. Note that, this
hourly curve of solar irradiance is consistent with experimental
measures at University of Rome Tor Vergata in mid-summer
[36], [37].

3) Consumed energy model for mobile station: According
to a recent study of FP7 program EARTH [38], BS can operate
in two separating modes: operating and sleep-mode. The
necessary power PBS for operating BS can be approximately
regarded as a linear function of transmitted power PTX , as
follows [38], [39]:

PBS =

{
NTRX(P0 + slope× PTX) , 0 < PTX ≤ Pmax

TX

NTRXPsleep , PTX = 0
.

(19)
The notation is defined as follows: NTRX is total number
of transceiver chains, which is a product of number of BS
sectors, antennas and carriers. P0 is constant power for equip-
ment’s operation. slope is linear coefficient of load-dependent
power transmission. Psleep is sleep-mode power consumption,
Psleep < P0. Pmax

TX is maximum transmitted power per
antenna. Note that, sleep-mode is regarded as the key for
energy-saving schemes. In state-of-the-art BS, the operating
power is set independent of load, which leaves the potential
of saving energy to future BS [38], [40]. For macro BS, the
estimated values of these parameters are [38]: P0 = 130 W,
slope = 4.7, Psleep = 75 W and Pmax

TX = 20 W. NTRX = 1
and NTRX = 2 for SISO and MIMO 2×2, respectively. In our
simulations, the range of PTX value is equally divided into
K levels, i.e. PTX,k , k

KP
max
TX , k = 1, . . . ,K. Time period

T for switching PTX level is one hour.
4) Physical data rates: By Shannon’s theorem, the user’s

maximum data rate depends on channel bandwidth B and
signal-to-noise ratio, as follows:

C(x) = kB log2(1 + SNR(x)),

SNR(x) = NTRX
PTX/PL(x)

N0B
, (20)

in which B is channel bandwidth, k is coefficient gap between
practical and optimal coding schemes, SNR is signal-to-noise
ratio dependent on transmitted power PTX and user’s path-
loss PL(x) to BS, and N0 is standard thermal noise power
spectral density. Coding coefficient in (20) was estimated as
k ≈ 0.5, k ≈ 0.58 and k ≈ 0.54 for SISO, SIMO 1 × 2 and
MIMO 2 × 2 systems, respectively [41]. These figures have
been obtained by fitting (20) with the outputs of an operator
simulator compliant with 3GPP recommendations [42] and in
particular take into account fast fading and MIMO multiplex-
ing gain. The path-loss PL(x) for non-line-of-sight (NLOS)
macro BS in urban area and carrier frequency fc = 2.6
GHz can be evaluated from 3GPP technical report [42]:
PL(x) = 39.1 log10(x) + 21.8 (dB), where 10 < x < 5000 in
meter. The channel bandwidth B = 20 MHz is also assumed
in our simulations. We first consider a single-cell scenario
without shadowing and then show results with 6 interferers
and shadowing with standard deviation of 6 dB.

5) User’s traffic model: In this paper, the coverage area S
of BS is considered as a ring, whose coverage radius is

assumed to be between ra = 10 m and rb = 1000 m. Mobile
user’s location is assumed to be fixed during the call and
users appear uniformly inside S. In queueing theory, our user’s
traffic can be modeled as M/G/1/κ processor-sharing queue
(i.e. with admission control), in which κ is maximum number
of users being served [43], [44]. The utilization factor ρ in
this case can be calculated as follows [45], [46]:

ρ =

∫
x∈S

ρ(x)dx, with ρ(x) ,
λ(x)

µ(x)
=

ξ

C(x)/σ
, (21)

where λ (user/s) is mean rate of arrival users, ξ (user/s/km2)
is mean arrival rate per surface unit, µ (user/s) is mean value
of serving rate of BS and σ (Mbit/user) is mean size of
transmitted data per user. From Shannon’s rate expression
(20), it is difficult to provide solution for integral (21) in
closed form. We calculate (21) via discretization of area S
in our simulations. The blocking probability Probb and the
mean throughput per user in this case are [45], [47]:

Probb = ρκ
1− ρ

1− ρκ+1
,

R = ψS
(1− ρ)

ρ

1− ρκ

1− (κ+ 1)ρκ + κρκ+1
, (22)

where ψS (Mbps) is total data traffic demand inside S and
ψS , σ

∫
x∈S λ(x)dx = σξπ(r2

b − r2
a). In our simulations,

the admission control is based on the maximum number κ
of active users, such that data rate for any active user is at
least Cmin = 0.1 Mbps, i.e., we set κ =

⌊
C(rb)
Cmin

⌋
, with floor

function b·c, as done in [47, section 4.1]. Then, we adopt the
scenario #1 (ordinary traffic) and scenario #2 (heavy traffic)
in EARTH project [38] for average mobile traffic demand in
European urban area. All mobile users equally subscribe to 3
operators. However, only active subscribers require data traffic
from operator. As extracted from [38, Fig. 4], the population
density for urban deployment is assumed 1000 people per km2

and the hourly percentage χ of active subscribers in average is
shown in Fig. 4c, whose maximum is 16% at peak hour. From
those numbers in [38], we can calculate the hourly user’s traffic
demand σξ. The maximum value of user’s traffic demand σξ
for scenario #1 and #2 is 9.2 Mbps/km2 and 17.25 Mbps/km2

at peak hour, respectively. For simplicity, we only consider
scenario #2 in subsection IV-C8.

B. Markovian model for base station

1) Action and policy definitions: Let us assume that trans-
mitted power PTX cannot be changed during the fixed time pe-
riod T. If we consider the decision on transmitted power value
P

[i]
TX , at ith time period, as an action ai = P

[i]
TX within a finite

set of K possible values A = {PTX,1, PTX,2 . . . , PTX,K},
the policy in this case is a sequence of PTX , as follows:
πi = {a1, . . . , ai} = {P [1]

TX , P
[2]
TX . . . , P

[i]
TX} ∈ Πi.

2) Quality of service as a reward: We assume that the
reward for our system is a measure of the user’s Quality
of Service (QoS). In this paper, for a given policy πN , we
consider the user’s average throughput R̄(πN ) (in Mbps/user)
as the QoS. For this purpose, let us assume that, during ith
time period, BS has served totally zi mobile users, whose
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average throughput per user is Ri(ai) (in Mbps/user) given
by (22). The number zi of served users is then a function
of the blocking rate Prob[i]

b (ai) given by (22), i.e. we have
zi = (1− Prob[i]

b (ai))ℵi, where ℵi denotes number of arrival
mobile users during ith time period. In practice, blocking prob-
abilities Prob[i]

b are kept sufficiently small. Then, in this case,
we can approximate zi ≈ ℵi. Moreover, ℵi is proportional to
χi in Fig. 4c, so that:

R̄(πN ) =

∑N
i=1Ri(ai)zi∑N

i=1 zi
≈
∑N
i=1Ri(ai)χi∑N

i=1 χi
. (23)

In our Markovian model, the reward bi can be defined as
bi(ai) = Ri(ai)

χi∑N
i=1 χi

, so that the accumulated reward vN ,
as defined in (1), is equal to the overall average throughput
R̄(πN ):

v(πN ) =

N∑
i=1

bi(ai) = R̄(πN ). (24)

Note that, in admission control scenario, the approximation for
average throughput (23) was proposed in order to achieve the
recursive property for R̄(πN ) (24). With this approximation,
the reward can be written as a sum of independent rewards at
every time period, so that the reward definition has the desired
Markov property.

3) Blocking rate and grid energy as costs: In our model,
we assume that blocking rate and consumed grid energy are
two costs that must be constrained. We will thus consider cost
vectors ci = [c1,i, c2,i] of L = 2 dimensions, i = 1, 2, . . . , N .
The first cost series c1 = [c1,1, . . . , c1,N ]′ is then defined as
a sequence of saving energy amount during ith time period:
c1,i(ai) = E

[i]
U (ai) and E

[i]
U (ai) ,

(
P

[i]
V − P

[i]
BS(ai)

)
× T,

in which P [i]
V and P [i]

BS via (18-19) are the average harvested
solar power and BS power during period i respectively. The
accumulated cost u1 = [u1,1, . . . , u1,N ]′ in this case is equal
to accumulated saving energy level:

u1(πN ) = E0 +

N∑
i=1

c1,i(ai) = E0 + EU (πN ). (25)

From (17), the total consumed grid energy is:

EG(πN ) = −min(0, u1(π1), . . . , u1(πN )) (26)

The second cost value c2 = [c2,1, . . . , c2,N ]′ is defined as
c2,i(ai) = Prob[i]

b (ai)
χi∑N
i=1 χi

. The accumulated cost u2 in
this case is equal to the total average blocking rate:

u2(πN ) =

N∑
i=1

c2,i(ai) = Pb(πN ). (27)

From equations (25), (26) and (27), we see that costs can be
written as the sums of independent costs at every time period
and have thus the desired Markov property.

4) Constrained optimization formulation for BS: From the
Markovian model for BS (24-27), let us consider following
optimization problem:

π∗N = argmax
πN∈Π

(τ)
N

R̄(πN ),

under two constraints πN ∈ Π
(τ)
N :

{
EG(πN ) ≤ τE
Pb(πN ) ≤ τb

,

(28)

where τE and τb are desired thresholds of total consumed
grid energy and average blocking rate, respectively. If grid
energy is not available in practice, we can simply set τE = 0.
This problem can be feasibly solved via Forward-Backward
recursion of CVA in section II-D. Also, we recognize that the
cost sequences EG(πi) and Pb(πi) are monotonic. Hence, we
can verify these constraints in tandem with CVA’s forward
recursion, as explained in section II-E. Note that, we can
regard the min operators in (26) as special cases of ring-sum
operator, as illustrated in (15), when applying (11).

IV. SIMULATIONS

In this section, we will consider a macro BS in a Euro-
pean urban environment. The BS consumes energy in hybrid
scheme, which includes solar battery and grid energy. The
adopted simulation parameters (e.g. channel model, carrier
frequency, etc.) are given in section III-A. Our purpose is then
to control transmitted power PTX in order to maximize user’s
average throughput under two constraints: total consumed
grid energy and total blocking rate. Two approaches will be
compared to each other: the traditional one keeping PTX fixed
all the time versus our novel CVA presented above.

A. Allocation methods for transmitted power level

Two approaches (fixed PTX and CVA) for allocating PTX
level over time will be considered. In fixed PTX scheme,
the PTX is kept at chosen level for the whole time horizon,
regardless of whether there is any active user in the cell.
The fixed PTX level is chosen so as to meet the energy
constraint. In CVA scheme, we study three rejection strate-
gies, namely free-blocking-rate, blocking-rate-constraint and
minimum-blocking-rate.
• In free-blocking-rate strategy, there is no constraint on

the blocking rate2. CVA will maximize user’s average
throughput under constraint of consumed grid energy EG.
For quantization step in CVA, the energy process EU in
section III-A1 is uniformly quantized up to M = 100
levels.

• In blocking-rate-constraint, CVA will maximize user’s
average throughput under two constraints, one for EG
and the other is 5% for total blocking rate. We quantize
the energy process in 100 levels and the blocking rate in
10 levels, i.e., M = 1000.

• In minimum-blocking-rate, CVA will minimize blocking
rate under constraint of consumed grid energy EG. The

2Nevertheless, the blocking rate is still computed in order to serve as a
tie-breaking rule for policies leading the same user’s average throughput.
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energy process is quantized with M = 1000 levels. User’s
throughput is ignored3.

For illustration, in CVA scheme, there are K = 10 levels of
PTX , while in fixed PTX there are 2K levels.

B. Reference scenario

Reference scenario is a practical and typical case where
optimization technique, i.e. CVA, is performing much better
than fixed PTX scheme. In this scenario, SISO system is
adopted; the observation’s time-length constraint is one day;
the size of solar panel is assumed to be 4 m2. The effect of
these parameters will be investigated in subsequent scenarios.
The fixed PTX scheme and CVA with free-blocking-rate
strategy are then applied and results are shown in Fig. 5.

In Fig. 5a and throughout the paper, the dotted lines are of
CVA scheme, the marks without line are of fixed PTX scheme.
Rectangles correspond to the average throughput of accepted
users while the crosses correspond to all users (assuming zero
throughput for blocked users). The difference between these
two curves show the impact of the blocking rate. We can see
that CVA yields significant improvement, compared to fixed
PTX when EG constraint is tight. CVA is able to meet the
constraint with respect to EG.

Fig. 5b shows the evolution of accumulated saving energy
across the day for CVA and two fixed PTX schemes (namely
with minimum and maximum power). The five curves of
CVA correspond to five energy constraints taken from Fig. 5a.
CVA curve’s slopes vary between the fixed minimum and
maximum PTX curve’s slopes according to the chosen PTX
level. At first hours of the day (from 0:00 to 07:00), energy
is mostly consumed from the grid and hence PTX is adjusted
according to the constraint. During daylight (from 07:00 to
18:00), energy is harvested from the sun and is sufficient to
transmit at higher power levels or even full power. At night
(from 18:00 to 24:00), the energy harvested during daylight is
sufficient to transmit at full power. Note that the system has an
empty battery at 00:00 but has stored some harvested energy
at 24:00 that can be used for the next day.

Fig. 5c is a histogram of PTX levels for the five cases (from
left to right, respectively) of CVA scheme in Fig. 5a. Most of
the time CVA uses full power. When the energy constraint is
tighter, CVA switches to lower PTX level in order to save up
energy.

C. Case-studies

1) Effect of time horizon: The setting in this scenario is
the same as reference scenario, except that the time horizon
is set to 1 and 30 days, corresponding to right and left set of
curves, respectively, in Fig. 6a. Also, we assume a monthly
energy constraint for 30 days curves. For comparison with
1 day, we however scale the x-axis to a daily constraint in
Fig. 6a. Fig. 6b shows the energy process for the case of 30
days. For clarity, Fig. 6c is the zoomed version of Fig. 6b by
excluding the fixed PTX curves.

3It is however still computed to serve as a tie-breaking rules for policies
leading the same blocking rate.

In Fig. 6a, all curves are moved to the left when horizon
increases, i.e., the average consumed grid energy per day is
reduced when time horizon increases. The reason is that the
system stores some harvested solar energy in the battery from
one day to the next one (see Fig. 5b). With fixed PTX scheme,
the curve for 30 days has two parts: a steep increase and a
lower slope. When EU is higher than zero at the end of the first
day (as for P (min)

TX in Fig. 5b), no new grid energy is required
in the following days because the average input energy is
higher than the average output one. Therefore, the grid energy
constraint is used only for the first hours of the first day when
the battery is empty. This corresponds to the steep increase
part. When EU is less than zero at the end of the first day, we
require new grid energy everyday. Therefore consumed grid
energy scales with the time horizon. This corresponds to the
lower slope. With a 30 day horizon, CVA still outperforms the
fixed PTX scheme. When the constraint is tighter and tighter,
fixed PTX sees performance dropping while CVA maintain a
high level of throughput.

In Fig. 6b, we see that there are two modes for the
fixed PTX schemes. Either there is enough harvested energy
compared to the consumed energy and the saved energy EU
is growing indefinitely, or there is not enough and more and
more grid energy is consumed (see minimum and maximum
fixed PTX curves respectively). There is thus a best fixed PTX
that balances input and output energy processes on the long
term.

In Fig. 6c, we observe two behaviors. If the constraint is
loose, the system takes energy from the grid every day and
we observe a decreasing trend towards the constraint. If the
constraint is tight (almost zero), during the first half of the
month, the system save energy every day in the battery and
releases it in the second half of the month to meet the contraint
after 30 days. In contrast fixed PTX policies either save
or release energy every day without being able to modulate
between the days. This flexibility in tight constraint helps CVA
increase the user’s average throughput by about 40%, from
9.3 Mbps in fixed PTX scheme to 12.8 Mbps in CVA.

2) Effect of panel dimensioning: In this scenario, we study
the effect of the solar panel size. For illustration, we assume
the reference scenario with time-horizon of one day and the
minimum-blocking-rate strategy. Solar panel’s size is set to 0,
2 and 4 m2 (i.e from right to left set of curves in Fig. 7a,
respectively). We first observe that reducing the panel size is
equivalent to requiring more grid energy as curves are moving
to the right. If the panel is small the gain of CVA is also small
with respect to fixed PTX policy because there is less room
for regulation between days. From 0 to 4 m2, we observe
important gains of CVA with respect to fixed PTX . Above
4 m2, harvested energy is more than sufficient and there is no
further gains. The blocking rate for CVA is also very small in
this case, in which the largest one is 5.9% (vs. 50% for fixed
PTX ) while the rest is almost zero. As conclusions for this
subsection, the panel size has to be chosen according to the
grid energy constraint, CVA outperforms fixed PTX scheme
in all cases, and even if there is no solar panel, there is still
room for optimization.
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Figure 5. CVA vs. fixed PTX scheme (reference scenario, free-blocking-rate strategy).
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3) Effect of battery size: Similar to previous scenario, we
now assume MIMO 2×2 and a panel size of 8 m2. The effect
of varying battery size and non-empty initial battery (E0 > 0),
as explained in section III-A1, is shown in Fig. 7b. We first
observe that, similar to panel dimensioning, varying battery
size moves curves horizontally: obviously, when battery size
increases, less grid energy is required. CVA clearly outper-
forms fixed PTX . Also, CVA works better with large batteries
because there is more freedom for power regulation. Having
an initial non-empty battery has a similar effect because this
stored energy is used during first hours of the process when
daily light is not available. The case of unlimited battery allows
us to see that a battery level of about 4.3 kWh is sufficient. By
cutting off battery capacity down to almost a half at 2 kWh or
even by removing completely the battery, a significant amount
of harvested energy is lost and more energy is required from
the grid.

4) Effect of MIMO system: In this subsection, we study
the influence of SIMO 1 × 2 and MIMO 2 × 2. A 10 days
time-horizon, no sleep-mode, free-blocking-rate strategy are
assumed. Panel sizes of 4 m2, 4 m2 and 8 m2 are assumed
for SISO, SIMO and MIMO cases, respectively. Results are
shown in Fig. 7c. We first see how MIMO increases the
average throughput but requires more energy. Moreover, the
blocking rate is reduced with MIMO (almost zero). The reason
is that the trafic demand is the same while the serving rate
is increased. CVA in MIMO case outperforms fixed PTX
scheme and the relative gain with respect to fixed PTX is
similar to the SISO case. The interesting case is SIMO, which
compromises between SISO and MIMO. Given the same
amount of harvested energy, the average throughput in SIMO
is significantly higher than that in SISO, while the blocking
rate in SIMO case is dramatically lower (almost zero). This
is owing to the increase in serving rate in SIMO, without the
need of increase in energy like MIMO. Although the average
throughput of SIMO is not as high as that of MIMO, we
suggest that SIMO should be preferred in application of CVA,
owing to its efficiency in energy per bit.

5) Effect of shadowing and interference: Given the same
MIMO 2 × 2 case in previous subsection, we wish to study
the effect of shadowing and interference. At equal angles
around our central BS, we set up six extra macro BSs as
interferers, whose inter-distance to central BS is two times the
cell radius rb, as shown in Fig. 7e. For simplicity, we assume
that interferers transmit at 10 W, i.e., half of the maximum
power. For every received power, we consider an independent
shadowing of σs = 6 dB [42] in the path-loss formula in (20).
The best server policy is employed, i.e., a user is served by the
BS providing the highest received power. Results in this case
are shown in Fig. 7d. As expected, shadowing effect reduces
QoS significantly, down to about 50% of QoS in no shadowing
case. The interference effect then further reduces QoS down to
about 50% of QoS in shadowing case. Nevertheless, we again
observe that, for all cases, the CVA always yields better QoS
than fixed PTX for our central BS under the same constraint
of grid energy. The rejection rate in CVA is also sufficiently
low.

6) Effect of iterative CVA in BS network: Let us now study
a network of BSs as shown in Fig. 7e. The hexagon area
is served by seven solar BSs (the coverage radius is nearly
doubled with rb = 1990 m compared to previous cases). In
such a single frequency network, every BS tries to optimize
its QoS, while generating interference on other BSs and thus
influencing their own QoS. To solve this issue, we propose
an iterative CVA, which iteratively applies CVA to each BS
one-by-one while keeping the PTX trajectories of all other
BSs unchanged. Along the iteration steps, the network average
QoS never decreases. Indeed if we fix PTX policies of all
BSs but one and tune network QoS via the remaining PTX
policy, the QoS can only improve because CVA provides
a constrained near-optimal policy. Hence, iterative CVA is
guaranteed to converge to a local maximum for the QoS of
the whole network.

In simulations, we observed that not more than four rounds
of iteration are required for convergence, given that our
initialization is fixed PTX scheme of the same grid energy
constraint and each round consists of one iteration for each
BS. In Fig. 7f, we assume that the harvested solar energy
process and daily grid consumed energy constraint are the
same for all BSs. Users are served by their best server, which
explains that the MIMO’s average throughput in this case is
better than that of shadowing and interference case in Fig. 7d.
The SISO and SIMO, however, have much lower throughput
that those in Fig 7c, owing to shadowing and interference in
hexagon area. In all cases, iterative CVA outperforms the fixed
PTX scheme. This is due to the fact that the iterative CVA
is now able to regulate the PTX of all interferers in order to
balance the other-cell interference. As shown in Fig. 7f, given
the same average user’s throughput, iterative CVA can save
up to 85% of grid consumed energy, in comparison with fixed
PTX scheme. Also, given the same grid energy constraint, all
user’s throughput in iterative CVA are higher (up to 25%) than
that of fixed PTX scheme.

7) Effect of sleep-mode: We now allow the BS to go in
sleep-mode, i.e., whatever the policy (CVA or fixed PTX ),
the BS consumes less energy when there is no user to serve.
We assume a 10 days time-horizon, a panel size of 2.8 m2

and a minimum-blocking-rate strategy. Results are shown
in Fig. 8a,b. As with sleep-mode we need less energy, the
grid energy constraint can be much tighter to achieve the
same throughput. As a consequence, we can reduce the panel
size with respect to the reference scenario: about 3 m2 are
sufficient to run a BS with sleeping-mode and without grid
energy, which explains why we picked a slightly smaller
panel for this scenario. An interesting observation is that CVA
achieves much higher gains in presence of sleep-mode when
the constraint is tight and almost no gain when the constraint
is loose. The high gain can be explained as follows. CVA
offers higher throughputs than fixed PTX , so that users leave
the system quicker. As a consequence the proportion of time
during which there is no user in the system is higher (see
Fig. 8b) and the BS switches to sleep-mode more often (from
10% for fixed PTX to 40% for CVA in the tightest constraint
scenario).
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PTX levels
(W)

Grid energy (kWh) Throughput of all users
(Mbps)

Throughput of accepted
users (Mbps)

Blocking
rate (%)

Running
time (s)

Fixed
PTX

[2, 20] [0.9, 1.5] [0.5, 15.4] [0.7, 15.4] [49, 0] 0.0001
[2, 10, 20] [0.9, 1.1, 1.5] [0.5, 6.2, 15.4] [0.7, 6.3, 15.4] [49, 1.3, 0] 0.0001
[2, 6, 12, 20] [0.9, 1.0, 1.2, 1.5] [0.5, 2.3, 8.2, 15.4] [0.7, 2.6, 8.2, 15.4] [49, 11, 0, 0] 0.0001

Brute-
force

[2, 20] [0.9, 1.5] [11.3, 15.4] [12, 15.4] [5.9, 0] 3879
[2, 10, 20] [0.9, 1.1, 1.5] [11.4, 13.7, 15.4] [12, 13.7, 15.4] [5.6, 0, 0] 110
[2, 6, 12, 20] [0.9, 1.0, 1.2, 1.5] [11.4, 12.6, 14.4, 15.4] [12, 12.6, 14.4, 15.4] [5.6, 0, 0, 0] 3471

CVA
[2, 20] [0.9, 1.5] [11.3, 15.4] [12, 15.4] [5.9, 0] 0.007
[2, 10, 20] [0.9, 1.1, 1.5] [11.4, 13.7, 15.4] [12, 13.7, 15.4] [5.6, 0, 0] 0.005
[2, 6, 12, 20] [0.9, 1.0, 1.2, 1.5] [11.4, 12.6, 14.4, 15.4] [12, 12.6, 14.4, 15.4] [5.6, 0, 0, 0] 0.011

Table I
SIMULATION RESULTS FOR REFERENCE SCENARIO WITH DIFFERENT POSSIBLE STATES OF PTX (W).

8) Effect of rejection strategy: We now study the effect
of different rejection strategies. We use the same assumption
as in the previous subsection with MIMO 2 × 2. In order
to stress the system, we increase the traffic and assume the
scenario #2, in which 50% of active users are heavy users.
With this high traffic demand, we compare the three rejection
strategies for CVA. The result is shown in Fig. 9a,b. We first
observe that CVA always outperforms fixed PTX in terms of
user throughput. There is however a trade-off between the gain
and the blocking rate: as the blocking rate constraint is tighter
(from free to 5% to minimum strategies on the figures), the
throughput gain is lower (see Fig. 9a). The free-blocking-rate
strategy yields the most throughput gain for CVA, but with
high blocking rate (from 24% to 14% for top set of curves in

Fig. 9b). The blocking-rate-constraint meets the constraint at
5% blocking rate, but yields lower gain in throughput. Lastly,
the minimum-blocking-rate strategy yields the least blocking-
rate, around 1.1% in Fig. 9a,b, but has little throughput gain
over traditional fixed PTX scheme. When the constraint is
very tight, this strategy is very interesting as both throughput
and blocking rate gains are huge (see the first left points of
the two figures). As a conclusion, CVA offers the flexibility
to control and balance user throughput and blocking rate.

9) Comparison with brute-force method: We now consider
a very simple scenario and compare the output of CVA with
fixed PTX scheme and the optimal policy obtained with the
brute-force approach. In order to make it computable, we only
consider the case of two, three and four possible PTX values,
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as shown in Table I, over a single day. The number of policies
is 224, 312 and 412 for the case of two possible PTX values
over 24 slots of one hour period, three and four possible PTX
values over 12 slots of two hours period, respectively. The
grid energy constraint EG kWh is set so as fixed PTX meets
the constraint by always using only one PTX state all the
time. In all cases, brute-force and CVA provide the same
performance and clearly outperform fixed PTX scheme in
terms of throughput and blocking rate. From numerical results
we observe that indeed the optimal policy is returned by CVA
in all cases. Running time is computed using MATLAB and
a commercial PC (Intel i7 CPU, 2.67 GHz) and shows clear
advantage of CVA.

V. CONCLUSION

In this paper, we tackled generic optimization problems
under multiple constraints, whose objective and constraint
functions are based on Lp-norm. We formulated this kind
of problems as a quantized Markovian cost-reward process.
Next, we designed a low complexity near-optimal optimization
algorithm, called Cost-constrained Viterbi Algorithm, to solve
these problems.

We applied this framework to resource allocation in hybrid
mobile base stations. For the first time, we formulate the
hybrid energy process using Lp-norm. Our algorithm was
shown to be robust, flexible and near-optimal in practical
settings of solar mobile base station.

We showed in which practical scenarios optimization is par-
ticularly interesting compared to fixed transmit power policies:
when the constraints are tight (grid energy, solar panel size,
short time horizon, blocking rate, battery size) or the system
is stressed (high traffic demand), our Cost-constrained Viterbi
Algorithm achieves huge gains in user’s average throughput
and blocking rate. In a more typical scenario, about 40% gain
in user throughput can be achieved under the same constraint
of grid energy for single BS and about 85% reduction in grid
energy can be achieved under the same constraint of user
throughput for hexagon network of BSs.
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