
1

Load Balancing in Heterogeneous Networks Based
on Distributed Learning in Near-Potential Games

Mohd. Shabbir Ali, Pierre Coucheney, and Marceau Coupechoux

Abstract—We present a novel approach for distributed load
balancing in heterogeneous networks that use cell range expan-
sion (CRE) for user association and almost blank subframe (ABS)
for interference management. First, we formulate the problem as
a minimisation of an α−fairness objective function with load and
outage constraints. Depending on α, different objectives in terms
of network performance or fairness can be achieved. Next, we
model the interactions among the base stations for load balancing
as a near-potential game, in which the potential function is the
α−fairness function. The optimal pure Nash equilibrium (PNE)
of the game is found by using distributed learning algorithms. We
propose log-linear and binary log-linear learning algorithms for
complete and partial information settings, respectively. We give a
detailed proof of convergence of learning algorithms for a near-
potential game. We provide sufficient conditions under which the
learning algorithms converge to the optimal PNE. By running
extensive simulations, we show that the proposed algorithms
converge within few hundreds of iterations. The convergence
speed in the case of partial information setting is comparable
to that of the complete information setting. Finally, we show that
outage can be controlled and a better load balancing can be
achieved by introducing ABS.

I. INTRODUCTION

Due to the ever increasing demand for improved quality of
service in terms of higher data rates and improved coverage,
the conventional cellular networks are becoming heteroge-
neous. Heterogeneous networks consist of macro base stations
(BSs) and small BSs that transmit with high and low power,
respectively. Conventional user association rule is such that
the users select a BS that provides the highest received power.
This may however result in an imbalance between BSs loads
because the macro BSs transmit at higher power and thus
associates with more users. This creates overload situation at
the macro BSs and at the same time under-utilised resources
at the small BSs. Therefore, a natural problem that arises is
how to associate users to BSs such that the network resources
are utilised efficiently and the load is shared among the BSs.

Load balancing has been extensively studied in the literature
using various approaches. An overview can be found in [2],
[3]. These can be broadly classified as centralised, e.g. in [4]–
[7], and decentralised optimisation approaches, see e.g. [8]–
[12]. However, centralised solutions are computationally ex-
tensive, require huge information exchange overhead, and are
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thus not scalable. To overcome these limitations, decentralised
approaches have been proposed. Load balancing is modeled
as a convex optimisation problem in [8] and a distributed
algorithm, which is a fixed point iteration, is proposed to solve
it. It is a user-centric approach, in which users decide to which
BS they associate based on load information broadcast by BSs.
User-centric game theoretical and learning approaches are also
proposed, e.g. using congestion games [9], [11], evolutionary
games [10] or distributed Q-learning [12].

Some network-centric approaches include power control and
cell range expansion (CRE). In power control more users can
be offloaded to small BSs by increasing their transmit power
because user association is based on maximum received power
of user [13]. Since, small BSs have tight power constraint,
power control may not be feasible for efficient load balancing.
In this paper, we focus on an alternative network-centric
approach, in which BSs take decisions and users follow a
predefined association rule called CRE. According to the
CRE technique, users associate with a BS that provides the
maximum biased received power. A CRE bias is broadcast by
every BS and is typically higher for small BSs than for macro
BSs. This results in an increase of the small cell coverage
and thereby of the number of users associated to them. CRE
technique has the drawback of increasing outage probability at
the cell edge [14], it is therefore often deployed in conjunction
with almost blank subframes (ABS) at the macro BS [15].
During these subframes that represent a fixed ratio of the radio
frame, macro BSs drastically lower their transmit power, so
that small BSs cell edge users can experience less interference,
when scheduled during these periods.

The challenge we intend to tackle here is to jointly de-
termine the optimal CRE bias values and ABS ratios for a
required optimal performance of the network. Several papers
try to achieve a similar goal. In a first set of papers, per-
formance evaluation and optimisation are performed using
simulations or experiments [16]–[18]. They give interesting
insights but provide optimal values only for some specific
scenarios. Centralised approaches provide upper bounds on
performance but fail to address the scalability issue, see
e.g. [19]–[23]. In [20] for example, authors formulate an
optimisation problem aiming at maximising the Jain’s fairness
index between station loads.

Another set of papers is focused on distributed algo-
rithms [12], [19], [24]–[27]. Early papers [19], [24], [25]
propose heuristics without any goal of achieving some kind of
optimality. In [27], authors formulate an integer programming
problem, relaxed into a convex problem, and they propose
a distributed algorithm based on Lagrangian dual decom-
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position. ABS and related trade offs are however ignored.
In [26], two independent algorithms are presented for optimal
CRE bias and ABS ratio, respectively. Optimal parameters are
obtained for a given number of active users and the outage
constraint is ignored. In a recent paper [28], Liu et al. model
the system as a potential game and use best response algorithm
to reach a Nash Equilibrium (NE) that is also a local optimiser
of a proportional fairness objective function. In this paper, as
in others (e.g. [23], [26], [27]), a static full buffer traffic model
is assumed. This implies that proposed distributed algorithms
should converge faster than the change of traffic conditions.
This is an assumption that does not seem realistic for practical
implementations. On the contrary, we assume a dynamic traffic
model and we update association parameters after the traffic
has reached a stationary state. This is also the approach of [8],
[18], which respectively focus on user-centric load balancing
(without CRE or ABS) and a centralised approach. Very few
analytical works (with the exception of [12]) consider outage
probability as a possible constraint when using CRE. Nowhere
in the above literature, the effect of shadowing is studied in
conjunction with CRE and ABS.

In this paper, we propose a general framework for determin-
ing jointly the optimal CRE biases and the optimal ABS ratios
for different performance requirements of the network. We
address this problem by considering an α−fairness objective
function that captures various aspects of the network perfor-
mance and fairness for different α values. A similar function is
used in [8] but in a different context with the main difference
that our problem is not convex. We model our system using the
notion of near-potential game [29], a framework needed to take
into account shadowing in the radio propagation model. We
solve the non-convex optimisation problem using distributed
learning algorithms, which converge in probability to the best
NE of the game even in absence of complete information (in
contrast with [28]).

A. Contributions

Novel approach: We present a novel approach for load
balancing in heterogeneous networks that uses CRE for user
association and ABS for interference coordination. Our ap-
proach is to distributively minimise an α−fairness objective
function using distributed learning algorithms in near-potential
games with load and outage constraints. We assume a dynamic
traffic model and a time scale separation between traffic
dynamics and user association parameters update.

Non-convex constrained optimisation: First, we model the
load balancing problem as a non-convex constrained opti-
misation with overload and outage probability constraints.
The α−fairness objective function captures various network
performances and fairnesses for different α. For α = 0
the objective function captures min-sum-load policy of the
network. For α→∞, we prove that it results in the min-max
load policy (Theorem 1). We extend the classical result derived
in [30] by considering a non-convex α−fairness function.
Optimal CRE biases and ABS ratios are the solution set.

Near-potential game framework: Then, we model the sys-
tem as a near-potential game (c.f. [29]) using a simple utility

structure, which only requires the knowledge of the neigh-
borhood of every BS (similar idea in [28]). In presence of
shadowing the neighborhood of every BS may include the
whole network. As a consequence, the potential game pro-
posed in [28] can only be solved in a centralised way. Relying
on near-potential game we solve the problem distributively.

Learning algorithms: By adapting log-linear learning algo-
rithms (LLLA) to outage and load constraints, we achieve
the global minimum of the objective function. We consider
two different settings: complete and partial information. In
the former setting, we adapt classical LLLA, whereas in the
latter setting, we adapt binary LLLA (BLLLA). We prove the
convergence of LLLA and BLLLA in near-potential games to
an ε-NE, whose potential is closed to the global minimum of
the objective function (Theorem 3). This result is also proved
in [29]. We however extend to a more general framework by
using a different proof technique. Our technique does not need
stationary revision process. Instead the revision process can
be state and history dependent. Next, we provide sufficient
conditions on the parameter that controls the size of the
neighborhood, for convergence to an ε-NE with potential close
to the global optimum of the objective function (Theorem 4).
We also provide stronger conditions for the convergence to the
optimal PNE (Corollary 3). To the best of our knowledge, these
conditions are not present in the literature. Finally, we propose
a practical step by step construction of the neighborhood with
guaranteed convergence based on mobile users measurements
(Section IV-E).

Numerical results: By running extensive simulations, we
show that the proposed algorithms converge within few hun-
dreds of iterations to the global minimum. The convergence
speed of the BLLLA is comparable to that of the LLLA,
meaning that partial information is sufficient in practical
implementations. We show that the load balancing problem
can be solved distributively by restricting the number of
base stations neighbours. Numerical results show that for
load balancing LLLA and BLLLA outperform the algorithm
in [31]. We show that outage can be controlled without ABS
but at the price of undermining the interest of using CRE
technique. The introduction of ABS allows for low outage
together with better load balancing.

This paper is organised as follows. In Section II, the
system model is described and the problem is formulated. In
Section III, a near-potential game framework solution is pre-
sented. The various distributed algorithms that are considered
in this paper are described in Section IV. In Section V, our
approach is validated using extensive simulations. Finally, the
conclusions are given in Section VI.

II. SYSTEM MODEL

A. Network Model

We consider the downlink1 of a cellular network (typically
a LTE-Advanced network) consisting of a set Be of macro
BSs (typically eNodes-B) and a set Bs of small BSs in a two

1Downlink is usually considered as the dominant link in terms of traffic.
However, optimal user association on the downlink may not be optimal for
the uplink [32].
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dimensional region L. The set of all stations is denoted S ,
Be ∪ Bs. The transmit powers of macro and small BSs are
denoted as Pmacro and Psmall, respectively. There are special
subframes called ABS, during which a macro BS transmits
with reduced power PABS. The proportion of ABS subframes
is denoted θi ∈ [0; 1] for BS i. Let θ̄ =

[
θ1, θ2, . . . , θ|S|

]
be the ABS ratio vector. We assume that small BSs do not
implement ABS technique, i.e., θi = 0 for i ∈ Bs. Every small
BS i maintains a parameter ci ∈ [1; cmax] called CRE bias. The
CRE bias vector is denoted c̄ = [c1, c2, . . . , c|S|]. The CRE
biases for macro BSs are fixed to unity, i.e., ck = 1,∀k ∈ Be.
This leads to no bias in the received power from a macro BS.

1) Channel Model: The received power at location x from
BS i is Pigi(x), where Pi is the transmit power and gi(x) is
the channel gain, which captures the effect of path-loss and
shadowing. The effect of small-scale fading is not considered
because the time for user association procedure is assumed
to be much larger than the channel coherence time [8]. We
consider a scenario where the locations of the BSs and of the
users during their download are fixed. Therefore, the shadow
fading component is a constant multiplicative factor. Formally,
the channel gain model considered is [33]:

gi(x) = min
{

1,K |x− xi|−η eβyi(x)
}
, (1)

where K =
(
λw

4πd0

)2

, λw is the wavelength, d0 is the reference
distance, xi is the location of the BS i, η ≥ 2 is the path-loss
exponent, and eβyi(x) is the shadowing component where β =
log 10

10 and yi(x) is a realisation of Gaussian random process
of zero mean and covariance function Cyi(∆x) [34]:

Cyi(∆x) = σ2
she
−∆x
Dc , (2)

where σ2
sh is the variance, ∆x is the displacement, and Dc

is the decorrelation distance [33]. A constant cross correlation
between the yi(x) and yj(x) is considered as in [35].

Let M be the number subframes in a given radio frame.
For every allowed value of θ, we assume that there is a fixed
ABS pattern Υ(θ), i.e., a set of subframes during which a
BS transmits at lower power. Notice that Υ(0) = ∅. Then the
SINR γfi (x, θ̄) of a user at location x in a subframe f is given
as:

γfi (x, θ̄) =
P fi (θi)gi(x)∑

j∈S P
f
j (θj)gj(x) +N0

, (3)

where

P fi (θi) =


PABS if f ∈ Υ(θi), i ∈ Be,
Pmacro if f /∈ Υ(θi), i ∈ Be,
Psmall otherwise

(4)

and N0 = −174 + 10 logW is thermal noise power in dBm
and W is system bandwidth in Hz.

2) CRE User Association Rule: A user association rule
based on CRE and maximum transmit power is commonly
used in the heterogeneous networks [2], [14]–[16], [36]–[42].
According to this rule, a user located at x is associated to the
BS i that provides the highest biased received power. The set
of locations Di(c̄) associated to BS i is defined as:

Di(c̄) = {x|∀j ∈ S, Pigi(x)ci ≥ Pjgj(x)cj} , (5)

where Pi = Pmacro if i ∈ Be and Psmall otherwise.
3) Physical Data Rate: The physical data rate received by a

user at x in a subframe f when it is served by BS i is denoted
ν̃fi (x, θ̄). The user average data rate over a radio frame is
νi(x, θ̄) = 1

M

∑M
f=1 ν̃

f
i (x, θ̄). This should be understood

as the throughput achievable by the user alone in its cell.
The function ν̃fi (x, θ̄) is a non-negative and non-decreasing
function of the SINR γfi (x, θ̄). For SINR below minimum
threshold γmin the user is not served and ν̃fi (x, θ̄) = 0.

4) Traffic Model: Users are assumed to arrive in the system
according to a spatial random process, download a file of
random size and leave the system when the download is over.
This is referred to as elastic traffic. All users are scheduled in
all subframes2 [26]. At location x, the arrival rate is denoted
λ(x) [arrivals/s/m2] and the average file size is 1/µ(x) [bits].
Following [8], we model every BS i as a M/G/1/PS queue of
load:

ρi(c̄, θ̄) =

∫
Di(c̄)

λ(x)

µ(x)νi(x, θ̄)
1{maxf γ

f
i (x,θ̄)≥γmin}dx. (6)

BS i is stable if and only if 0 ≤ ρi < 1. In this work, only
stable network configurations are considered.

Assumption 1: [Time-scale separation] The process of up-
dating the CRE bias and ABS ratio is supposed to be long
with respect to the traffic variations. The M/G/1/PS queues
describing the BSs traffic are thus supposed to have reached
their stationary regime before any new change of these param-
eters.

Outage Probability is defined as the fraction of users that are
not served. Recall that a user is not served if its SINR is below
minimum threshold γmin. Formally, the outage probability Oi
observed by BS i is given by:

Oi(c̄, θ̄) =

∫
Di(c̄) λ(x)1{maxf γ

f
i (x,θ̄)<γmin}dx∫

Di(c̄) λ(x)dx
. (7)

In this definition, as soon as there is at least one subframe
during which the SINR is above the threshold, the user is
supposed to be served.

B. Problem Formulation and Objective Function

Following [8], we intend to minimise an α−fairness func-
tion φα

(
c̄, θ̄
)

over a feasible set F , which are defined as:

φα(c̄, θ̄)=

{∑
i∈S

(1−ρi(c̄,θ̄))1−α

α−1 , α ≥ 0, α 6= 1,

−
∑
i∈S log

(
1− ρi(c̄, θ̄)

)
, α = 1,

(8)

F =
{{
c̄, θ̄
}
|∀i ∈ S, ρi(c̄, θ̄) < 1, Oi(c̄, θ̄) < Ōi,

}
, (9)

where Ōi is the maximum outage probability for BS i. The
function φα(c̄, θ̄) is in general non-convex and even if it
is convex the set F is non-convex because c̄ takes discrete
values. The function φα(c̄, θ̄) captures various aspects of
fairness and performance for the network depending on the
choice of α.

2Another scheduling policy where only those users are served that are in
the extended region can also be included in our model [26]. However, it adds
more complexity without effecting the conclusions of this work.
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(α = 0) Min-sum-load policy: Minimising φ0(c̄, θ̄) min-
imizes the sum of BSs loads in general. In the particular
case, where θ̄ = 0, it results in a rate-optimal policy (see
Appendix A). (α = 1) Proportional fair policy: Minimis-
ing φ1(c̄, θ̄) is equivalent to achieving proportional fairness
between BSs [30]. (α = 2) Delay-optimal policy: It can be
shown that minimising φ2(c̄, θ̄) is equivalent to minimising
the average throughput of the network. The average throughput
of a stable M/G/1/PS queue is the product of arrival rate and
average delay. In our system model, the arrival rate is inde-
pendent of CRE bias and ABS ratio. Therefore, minimising
φ2(c̄, θ̄) is equivalent to minimising the average delay of the
network. For more detailed discussion refer to [8]. (α→∞)
Minmax policy: As α→∞ the minimiser of φα(c̄, θ̄) tends
to the min-max load vector. It is a standard result with convex
objective function [8], [30], [43]. We now prove this result for
our non-convex objective function in Theorem 1.

Definition 1: [Min-max load vector [43]] Let all the vectors
in F be sorted in increasing order. A vector ρ ∈ F is min-max
if ρ is lexicographically not greater than any vector in F . The
vector ρ is lexicographically lower than y, denoted ρ ≺ y, if
the first non-zero component of ρ−y is negative. We say that
ρ is not greater than y, denoted by ρ � y, if ρ ≺ y or ρ = y.

Let ri(c̄) = 1 − ρi(c̄, θ̄),∀i ∈ S. Let X ={
r ∈ R|S||∃c̄ : ρ(c̄) ∈ F , r(c̄) = r

}
. Load vector ρ∗ is a min-

max if and only if r∗ is max-min vector.
Theorem 1: Let rα∈argmax

r∈X

∑
i∈S

r1−α
i

1−α . Then, any accu-

mulation vector of the trajectory {rα}α>1 is max-min in X .
Proof: See Appendix B.

In Fig. 1, we show an example of F set obtained with 2 BSs
having different transmit powers located on a two-dimensional
region. It is clear from the figure that even if the CRE set
were continuous, F would not be convex. We also show the
optimal loads obtained for different α values. All the optimal
load points are located on the Pareto frontier. The point for
α ≥ 200 in Fig. 1 is the min-max load point because a point of
equal coordinates on the Pareto frontier is the min-max point.

III. NEAR-POTENTIAL GAME FRAMEWORK

In this section, we present an approach using near-potential
game framework for distributed optimisation of the objective
function. We do not intend to describe and analyse selfish
nature of BSs that aim to minimise their costs. Rather, our
goal is to achieve the global objective of load balancing
by prescribing a cost function to the BSs. For this context,
potential games provide a good framework because players of
such a game distributively optimise a potential function.

We model the problem as a user association game, where
the BSs are players and allowed CRE bias and ABS ratio
values are their strategies. BSs play the user association game
with the objective of minimising their costs. An ε-NE of the
game is reached when no player can benefit more than ε by
changing its strategy unilaterally.

Definition 2: [ε-Nash equilibrium] Let G ={
S, {Xi}i∈S , {Ui}i∈S

}
be a game, where S is set of

players, {Xi}i∈S are strategy sets, and {Ui}i∈S are cost
functions. Let ai be a strategy profile of player i and a−i be
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Fig. 2: Ilustration of the neighbour set.

a strategy profile of all players except for player i. A strategy
profile

(
a∗i , a

∗
−i
)

is an ε-NE if

Ui(a
∗
i , a
∗
−i)− Ui(ai, a∗−i) ≤ ε, ∀ai ∈ Xi,∀i ∈ S. (10)

If ε = 0 then it is a pure Nash equilibrium (PNE).
Based on the notion developed in [29] we now define ε-
potential game.

Definition 3: [ε-potential game] A game G ={
S, {Xi}i∈S , {Ui}i∈S

}
is an ε-potential game if there

is a potential function h : X → R such that ∀i ∈ S ,
∀ai, a′i ∈ Xi and ∀a−i ∈ X−i,

|Ui(ai, a−i)−Ui(a′i, a−i)+h(a′i, a−i)−h(ai, a−i)| ≤ ε. (11)

For ε = 0, it is an exact potential game [44]. The ε captures
the maximum pairwise difference between an ε-potential game
and an exact potential game with the same potential function
as in [29, Definition 2.2].
An exact potential game has at least one PNE and local
optimisers of the potential function are PNEs [44]. In the
following lemma, we provide the relationship between the
PNEs of a potential game and a near-potential game with the
same potential.

Lemma 1: Let G =
{
S, {Xi}i∈S , {Ui}i∈S

}
and G′ ={

S, {Xi}i∈S , {U ′i}i∈S
}

be an exact potential game and an
ε-potential game respectively, sharing a common potential
function. If a∗ is a PNE for G then it is an ε-NE for G′.

Proof: See Appendix C.
In our problem, we seek that the objective function (8) is

turned into a potential function of the user association game.
The issue is in designing the cost functions of the BSs to obtain
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an ε-potential game, where ε represents a trade off between
the quality of the solution and the distributed nature of the
algorithm. We consider a simple cost structure for BS i, which
takes into account only the effects of its neighbours. A similar
approach is used to obtain an exact potential game in [45],
[46]. The cost functions of the individual BSs are defined as:

U$i (ai, a−i) =
∑
j∈N$i

(1− ρj(ai, a−i))1−α

α− 1
, (12)

where N$
i is the neighborhood of BS i, $ is a parameter

to control its size, and ρj(ai, a−i) is the load of BS j given
in (6). With this cost function, we now formally define the
user association game.

Definition 4: [User Association Game] It is defined by the
tuple Γ$ =

{
S, {Xi}i∈S , {U$i }i∈S

}
, S is a set of BSs, Xi

is a set of strategies of BS i, and U$i is given in (12). Strategy
set Xi is a discrete set of CRE bias values for small BS i ∈ Bs
and Xi is a discrete set of ABS ratios for macro BS i ∈ Be.

In the following, we first show the construction of N$
i and

then in Proposition 2 we prove that the user association game
Γ$ is an ε-potential game.

A. Base Station Neighborhood

We start with the definition of the neighbour set Nx of small
BSs at location x:

Nx=

{
j ∈ S|max

cj
Pjgj(x)cj ≥ max

k∈S
min
ck

Pkgk(x)ck

}
. (13)

BS j is in Nx if it is likely to serve the user at x for some
CRE vector. Take the example of Fig. 2, which shows the
bias received power range at a given location x for all BSs.
The BSs whose biased received power range intersect with the
line that passes through the max-min biased received power
are the neighbour BSs. In Fig. 2, BS 1 is a macro BS and
has a single possible CRE bias. It also has the max-min bias
received power. This means a user at x will receive at least this
bias power. The bias received power from BS 5 can exceed
this max-min, so that BS 5 is likely to serve the user for some
CRE bias and is thus included in Nx. In the same way, BS 7
is also included in Nx. On the other hand, the bias received
power from BS 2 will never exceed that of BS 1 and thus
BS 2 will never serve the user at x.

We now construct the neighbourhood of small BSs based
on sets Nx. We assume that the users located at x calculate
Nx and report it to their serving BS, which multicast this
information to all the BSs in Nx. BS j is considered to be
a neighbour of BS i if the proportion of reports where BS i
and BS j are in Nx is at least a threshold $. This constraint
aims at excluding from the neighbourhood BSs that have
insignificant influence on load. Otherwise, due to the infinite
support of shadowing in our model, all BSs in the network
can be potentially neighbours. Formally, the neighbour set of
small BS i is defined as:

N$
i =

{
j ∈ S|

∫
x∈L λ(x)1i,j∈Nxdx∫
x∈L λ(x)1i∈Nxdx

≥ $

}
. (14)

For the threshold $ = 0 the neighbour set N0
i boils down

to N0
i =

⋃
x:i∈Nx Nx. The neighbour set N$

i is empty for
$ > 1. For 0 < $ ≤ 1, N$

i is a decreasing sequence of sets.
Note that a change in the ABS ratio theoretically affects

the load of all BSs of the network through interference. We
thus assume that a macro BS neighborhood is made of all
BSs. In practice however, the neighborhood of a macro BS
is finite because interference power decreases with distance.
Macro BS neighborhood can be constructed similarly to the
small BS neighborhood construction as shown in Appendix H.

Proposition 2: The user association game Γ$ with the
potential function (8) is an ε-potential game, where

ε = max
ai,a′i∈Xi,a−i∈X−i,i∈S

|
∑

j∈N0
i \N$i

(1− ρj(ai, a−i))1−α

α− 1

−
∑

j∈N0
i \N$i

(1− ρj(a′i, a−i))
1−α

α− 1
|. (15)

Proof: See Appendix D.
Corollary 1: The game Γ0 is an exact potential game.

IV. DISTRIBUTED LEARNING ALGORITHMS

Recall that the potential function property enables finding a
PNE through distributed learning algorithms. In this section,
we introduce distributed learning algorithms that are used to
find the optimal PNE of the user association game. First, we
present the BR algorithm and the LLLA for the complete in-
formation setting. Next, the BLLLA for the partial information
setting is described.

A. Best Response Algorithm

Best response algorithm is an asynchronous algorithm
where at any given time only a single BS updates its strategy.
Set $ and assume a time-varying random process with which
a BS is chosen to revise its strategy3. The selected BS
computes its cost Ui (ai, a−i(t− 1)) for all ai ∈ Xi and sets
Ui (ai, a−i(t− 1)) = ∞ if ρj ≥ 1 or Oj ≥ Ōj for j ∈ N$

i .
Then, the BS chooses a strategy ai ∈ Xi that minimises its
cost, given the strategies a−i ∈ X−i of other players. In other
words, BS i chooses a strategy from its best response set Bi:

Bi (a−i) = arg min
ai

Ui (ai, a−i) . (16)

Note that the BR algorithm requires complete information,
i.e., the effects of choosing all the other strategies are supposed
to be known. Moreover, BR algorithm is not guaranteed to
converge to the optimal PNE even in exact potential game
Γ0 because the potential function may have multiple sub-
optima [44]. For the ε-potential game Γ$ ($ 6= 0) and ε 6= 0,
a PNE may not even exist.

3Uniform probability or stationarity of the process is not required, it is only
required that the probability of selecting any player is positive.
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B. Log-linear Learning Algorithm

The LLLA is a classical asynchronous algorithm that
guarantees the convergence to the optimal PNE of an exact
potential game [47]. This algorithm is similar to BR but allows
deviations from the best response with a small probability. It
is summarised in Algorithm 1. However, for this algorithm
the BSs require again complete information. For example,
given the strategies of others, the BS has to know the cost
function value for all its strategies to compute (17). With
this information, it selects a strategy to play according to a
probability distribution. In general, acquiring this amount of
information is not feasible. To overcome this difficulty in the
next subsection we propose to use BLLLA.

Algorithm 1 Log-linear Learning Algorithm

1: Initialisation: Start with arbitrary action profile a.
2: Set parameter τ and $.
3: While t ≥ 1 do
4: Randomly select a player i.
5: Compute cost Ui (ai, a−i(t− 1)) for all ai ∈ Xi.
6: For any ai ∈ Xi, set Ui (ai, a−i(t− 1)) = ∞ if ρj ≥ 1

or Oj ≥ Ōj for j ∈ N$
i .

7: Take action ai(t) from Xi with probability paii (t),

paii (t) =
exp

(
− 1
τUi (ai, a−i(t− 1))

)∑
a′i∈Xi

exp
(
− 1
τUi (a′i, a−i(t− 1))

) . (17)

8: All the other players must repeat their previous actions,
i.e., a−i(t) = a−i(t− 1).

C. Binary Log-linear Learning Algorithm

The BLLLA converges to the optimal PNE of an exact
potential game even if only partial information about the game
is available to the players [47]. Partial information is the
information that a player has about its current strategy. Unlike
complete information the effect of choosing any other strategy
is not known to the player. As LLLA, the BLLLA is also an
asynchronous algorithm4. In this algorithm, whenever the BS
updates its strategy it does it in two steps. In the first step, the
BS tries a strategy from its strategy set to obtain its payoff.
In the second step, the BS randomly chooses among the two
strategies (present strategy and trial strategy) as summarised
in Algorithm 2.

Note that in all the above algorithms the actions that are not
in the feasible set F have infinite cost. If there is no action in
the feasible set F at time t then by convention we set CRE
bias equal to unity for small BSs and ABS ratio equal to zero
for macro BSs.

D. Convergence of LLLA and BLLLA to Optimal PNE

The proof of convergence of LLLA and BLLLA to optimal
PNE for an exact potential game Γ0 is given in [47]. Following
a similar technique, we prove the convergence of LLLA and
BLLLA to the global minimum of the potential function of a

4Asynchronicity is in fact only required within each neighborhood.

Algorithm 2 Binary Log-linear Learning Algorithm

1: Initialisation: Start with arbitrary action profile a.
2: Set parameter τ and $.
3: While t ≥ 1 do
4: Randomly select a BS i.
5: Select a trial action âi ∈ Xi with uniform probability.
6: Compute cost Ui (âi, a−i(t− 1)).
7: Set Ui (âi, a−i(t− 1)) = ∞ if ρj ≥ 1 or Oj ≥ Ōj for
j ∈ N$

i .
8: Play action ai(t) ∈ {ai(t− 1), âi} as given below.

ai(t)=


ai(t− 1), w.p. e−

1
τ
Ui(a(t−1))

e−
1
τ
Ui(a(t−1))+e−

1
τ
Ui(âi,a−i(t−1)))

,

âi, w.p. e−
1
τ
Ui(âi,a−i(t−1)))

e−
1
τ
Ui(a(t−1))+e−

1
τ
Ui(âi,a−i(t−1)))

.

(18)
9: All the other players must repeat their previous actions,

i.e., a−i(t) = a−i(t− 1).

near-potential game Γ$, $ > 0, in the following theorem. Un-
like in [29], our proof does not assume the underlying Markov
chain to be reversible, which allows to extend their result
to the cases where BSs are chosen in a non-stationary and
state-dependent way to revise their actions. As the underlying
Markov chain is ergodic, each state has a positive probability
to be chosen throughout the iterations of the algorithm. We
say that the algorithm converges to a state if that probability
is non zero when parameter τ goes to zero.5

Let φ∗α and φ†α be the first minimum and second minimum
values of the potential.

Theorem 3: Let ξ = maxa,b∈X,i∈S |ξ$i (a, b)|, where
ξ$i (a, b) is given in (35) with action profiles a and b that
differs at most in component i. For any ε > 0 and any ξ-
potential game Γ$ with ξ < ε

2(|X|−1) , LLLA and BLLLA
converge to a set of ξ-NEs with potential less than φ∗α + ε.

Proof: See Appendix E.
Corollary 2: For the game Γ$, if ξ < φ†α−φ

∗
α

2(|X|−1) then both
the LLLA and BLLLA converge to a set of PNEs whose
potential value is φ∗α.

Proof: See Appendix F.
We now define the neighborhood of every BS so that the

condition of Corollary 2 is met. The following theorem gives
an upper bound on $ that guarantees LLLA and BLLLA to
converge to an optimal PNE.

Theorem 4: The constraint in Theorem 3 is satisfied if

$ ≤ εQ (1− ρmax)
α
, (19)

where ρmax is the maximum possible load of a BS, Q =
maxx,θ̄,j∈S

1
νj(x,θ̄)

4|S||X|λm maxx{ 1
µ(x)}

, and λm is an upper bound for the sum

arrival rate in a cell.
Proof: See Appendix G

Corollary 3: The constraint in corollary 2 is satisfied if

$ ≤ Q
(
φ†α − φ∗α

)
(1− ρmax)

α
. (20)

Remark Recall that we have assumed that the neighborhood
of every macro BS is made of all the BSs in the network. It is

5Or, say otherwise, that the state is stochastically stable, see, e.g., [47].
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TABLE I: Simulation parameters.

Parameter Variable Value
Number of BSs Ns 8
Macro BS during NS Pmacro 46 dBm
Macro BS during ABS PABS 0 dBm
Small BS Psmall 24 dBm
Average file size 1

µ
0.5 Mbytes

Average traffic load density λ
µ

64 bits/s/m2

System bandwidth W 20 MHz
Carrier frequency fc 2.6 GHz
Noise power N -174+10log(W) dBm
Minimum SINR γmin -10 dB
Path-loss exponent η 3.5
Reference distance d0 10 m
CRE bias set ci {1, 1.1, 1.2, . . . , 16}
ABS ratio θi {0, 0.01, 0.02, . . . , 1}

however also possible to restrict it by following a similar tech-
nique as for small BSs. The definition (14) should be extended
by considering the set of macro BSs that significantly affect
the load of BS i. Then, similar conditions for convergence of
LLLA and BLLLA can be obtained. See Appendix H for more
details.

E. Effect of time-varying neighbours
For all the above algorithms, the BS i needs to know its

neighbours N$
i to calculate its cost. Providing to every BS

the neighbours set is a standard task for network operators
for a given CRE bias vector. This task can be performed
automatically e.g., using automated neighbour relation (ANR)
standardised by 3GPP [48]. The difficulty here is to determine
N$
i that depends on all the possible values of the CRE bias

vector (see (14)). To address this problem, we propose the
following technique.

At every packet call the user at location x calculates Nx and
reports it to its serving BS, which multicast this information
to all the BSs in Nx. In the process of learning, BS i updates
N0
i whenever it receives reports from other BSs. From this

the BS calculates the proportion of reports of neighbour BSs.
If the proportion of reports of BS j exceeds the threshold $
then it is included in N$

i . Since, the shadowing and the traffic
is stationary the estimate of proportion of reports converges
over time. Hence, N$

i ∀i, also converges. Thus, the algorithms
LLLA and BLLLA converge to the global minimum of the
objective function as proved in Corollary 2.

V. SIMULATION RESULTS

In this section, we show simulation results considering
standard parameters as adopted in 3GPP [49]. These param-
eters are listed in the Table I. We consider 8 BSs located
in a two dimensional region L. BS 1 is a macro BS that
transmits with Pmacro and the rest are small BSs that trans-
mit with Psmall. The user traffic varies with location across
an average traffic density of 64 bits/s/m2. There are two
hotspots where the traffic is 5 times the average traffic, which
can be seen in Fig. 3. We consider shadow fading with a
standard deviation of σsh = 8 dB and a decorrelation distance
of Dc = 20 m. Cross correlation between the shadowing
components at a location is considered to be 0.5. We use
the classical Shannon formula for calculating channel capacity
ν̃fi (x, θ̄) = W log2

(
1 + γfi (x, θ̄)

)
.

meters*5

m
e
te

rs
*
5

 

 

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

1

1.5

2

2.5

3

3.5

BS 3

BS 4

BS 2 BS 1

BS 8

BS 7
BS 6

BS 5

Fig. 3: Normalised traffic variations.

A. Performance Comparison of Algorithms

We first focus on the CRE optimisation and assume in this
section that the macro BS does not implement ABS (θ1 = 0).
We consider a square region L of side 1000 m.

The convergence of LLLA and BLLLA to the global
minimum of the objective function is shown in Fig. 5 for
τ = 10−3, $ = 10−22, and different values of α. We observe
that in all cases proposed algorithms converge within few
tens and sometimes few hundreds of iterations. We also see
that LLLA converges faster than BLLLA. This is of course
due to the complete information setting assumed for LLLA.
Note however that BLLLA does not loose so much in terms
of convergence speed; this is an interesting conclusion for a
practical implementation.

We also compare LLLA and BLLLA with Pradelski and
Young learning algorithm (PYLA), which is completely un-
coupled and a variant of trial and error algorithm [31]. It
guarantees asymptotic convergence to the optimal NE for
any finite game that possess at least one NE. Hence, it is
a suitable algorithm to compare with LLLA and BLLLA
for near-potential game Γ$. The comparison of evolution of
objective function φ50 is shown in Fig. 6 6. LLLA and BLLLA
converge quickly whereas PYLA oscillates between fast search
and slow search phases. Therefore, the performance of LLLA
and BLLLA for load balancing is much superior to that of
PYLA.

1) Effect of $: The effect of threshold $ on the conver-
gence of LLLA is shown in Fig. 7a for τ = 10−3 and for the
particular case α = 50 (results for BLLLA and other values
of α provide similar conclusions). For $ = 0 all the BSs
are neighbours so that our framework is an exact potential
game and LLLA converges to an optimal PNE. Threshold
parameter $ = 10−22 results in an ε-potential game and
satisfies the sufficient condition of Corollary 3. Therefore,
LLLA converges also to the global minimizer of the objective
function. Although small, this value of $ significantly shrinks

6The exploration parameter ε of PYLA is set to ε = 0.1. The functions
that govern slow and fast search phases PYLA are chosen to satisfy the
conditions [31, (1), (2), and (3)].
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(a) (α = 0) Rate-optimal policy.
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(c) (α = 50) Min-max policy.

Fig. 4: The variations of the coverage regions of BSs obtained using the optimal CRE for different α.

0 100 200 300 400 500
−6.6

−6.4

−6.2

−6

−5.8

−5.6

−5.4

−5.2

Iterations

φ
0
 

 

 

LLLA

BLLLA

(a) (α = 0) Rate-optimal policy.

0 100 200 300 400 500
10.8

10.9

11

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

Iterations

φ
2

 

 

LLLA

BLLLA

(b) (α = 2) Delay-optimal policy.
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Fig. 5: Convergence of LLLA and BLLLA (τ = 0.001, $ = 10−22).
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Fig. 6: Comparison of LLLA, BLLLA, and PYLA for α = 50,
$ = 10−22, and ε = 0.1.

the neighborhood set of the BSs. In the scenario of Fig. 3, BSs
2 and 4 are for example not anymore neighbours of BSs 5, 6,
and 7. If we now further increase $ to a value that violates
the condition of Corollary 3 ($ = 0.9), neighborhoods are
further reduced. In our scenario, BS 1 is for example the only
neighbour of BSs 3, 6, and 8. LLLA is however not anymore
guaranteed to converge to an optimal PNE as seen from the
figure. The threshold $ therefore strikes a balance between the
size of the neighborhood and the optimality of the solution.

2) Effect of τ : There is a trade-off in the choice of τ . LLLA
and BLLLA converge with high probability to the global
minimum of the objective function for τ ∈ (0,∞) under the
conditions of Corollary 2. This means that, asymptotically,
the probability that the algorithm is at the global minimum
approaches to one as τ goes to zero.

For high values of τ , LLLA and BLLLA results into
oscillations. This is due to the fact that the algorithms converge
fastly in probability to the uniform distribution. As a mater of
fact, it doesn’t spend much time in optimal states, which is not
practically desirable. For small values of τ , asymptotically, the
algorithms will spend most of time in the global optimal. How-
ever, convergence is slow in probability. This explains that the
system can take long time to escape from sub-optimal states.
Contrary to best response however, the proposed algorithms
will not get stuck into these sub-optimal states.

The effect of τ on the convergence of LLLA and BLLLA
for α = 2 and $ = 10−22 is shown in Fig. 7b and Fig. 7c,
respectively. For high value of τ = 0.05, LLLA results into
oscillations. It reaches the global minimum (around iteration
300) but does not spend much time in the optimum states. For
τ = 0.01, the time spent in the optimum states is increased.
For a carefully chosen τ = 0.001, the system spends most
of the time in the optimal states. We can see in Fig. 7c that
the behavior of BLLLA is similar to that of LLLA, except
that it takes more iterations to hit the global minimum of the
potential function because of the partial information used.
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Fig. 7: Effect of $ and τ on the convergence of LLLA and BLLLA.

TABLE II: Comparison of optimal CRE, optimal loads of BSs
for different α (τ = 10−3, $ = 10−22).

α = 0 α = 2 α→ ∞
BS i c∗i ρ∗i% c∗i ρ∗i% c∗i ρ∗i%

1 1 92 1 61 1 45
2 1 7 3 20 8 42
3 1 4 3 9 9 23
4 1 9 3 18 8 37
5 1 11 3 21 7 37
6 1 8 3 20 7 43
7 1 5 3 11 8 30
8 1 7 3 19 6 37

3) Effect of α: We now compare in Table II the optimal
bias values and BS loads. Corresponding coverage regions are
shown in Fig. 4. With α = 0, every user is served by the BS
that provides maximum data rate, which is obtained for bias
values equal to one. This corresponds to the classical best
signal association rule that results in heavy load imbalance
between stations: the load of the macro BS reaches 92%, while
small BSs have loads less than 11%. As α increases to 2 the
coverage regions of all small BSs expands and that of the
macro BS shrinks. The load of the macro BS is decreased to
61% and concurrently the utilisation of small BSs is increased
(up to 21%). Min-max policy is approximated with a value of
α = 50. The load of the macro BS is further reduced to 45%
and load dispersion is decreased.

This phenomenon can also be observed in figures 8 and 9,
where optimal CRE and loads are shown as functions of α.
Every point on this figure is obtained by averaging over 50
realisations of LLLA. By definition, the CRE of the macro
BS is constant and equal to 1. We see on this figure how the
CREs of small BSs are gradually increased and how the load
dispersion is reduced. We also conclude that choosing α = 50
provides a good approximation for the min-max policy in this
scenario.

B. Fairness-Outage Tradeoff Using ABS
In this section, we allow the macro BS to implement ABS

and study the effect of this technique on outage and fairness.
For the sake of simplicity, we set τ = 10−3, $ = 10−22 and
use LLLA. We also consider a square region L of side 2000 m
in the simulations. Three cases may be compared to evaluate
the interest of using ABS:

1) No outage constraint no ABS: In this case, the macro
BS does not implement ABS (θ1 = 0) and we do not
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Fig. 8: Evolution of optimal CRE bias.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

O
p

ti
m

a
l 
lo

a
d

 

 

BS 1

BS 2

BS 3

BS 4
BS 5

BS 6

BS 7

BS 8

Fig. 9: Evolution of optimal loads.

impose outage constraint. This serves as a benchmark
to compare with other two cases.

2) Outage constraint without ABS: We introduce here an
outage constraint (Ōi = 2% for all i) but still don’t
allow ABS (θ1 = 0). Outage is taken into account by
setting an infinite cost to actions violating the constraint
Ōi as shown in Algorithm 1.

3) Outage constraint with ABS: We impose an outage
constraint and allow ABS at the macro BS.

In Fig. 10, we show the cost function φα for the three
considered cases and different α. Each curve of the figure
is obtained by averaging over 50 realisations. In our scenario,
choosing α = 0 (Fig. 10a) results in a low outage probability.
Therefore, φα curves for the first two cases are very close
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to each other. Since outage constraint is already met without
ABS, introducing ABS does not bring any additional interest.
With α = 2 (Fig. 10b), outage probability increases but
remains below the acceptable threshold. As a consequence, the
three curves also converge to the same value. With α = 50
(Fig. 10c), outage probabilities exceed the threshold in the
first case. When outage constraint is introduced in the second
case, the cost increases because the feasible set shrinks (some
actions are not anymore available). When ABS is introduced
in the third case, the feasible set expands again and so the
optimal cost of the system decreases, fairness is improved.

Fig. 11 shows the evolution of the outage probabilities as the
algorithm iterates (we assume α = 50 and 50 realisations are
averaged). With no ABS and no constraint (Fig. 11 (i)), outage
probabilities of BS 3 and 7 considerably exceed the threshold
of 2%. The reason is that small BSs increase their CRE to
achieve optimality without taking care of users in outage, so
that users at cell edge may experience a very bad signal quality.
Therefore, fairness is achieved at the cost of an unacceptable
outage. Imposing an outage constraint without using ABS is
sufficient to achieve a good quality of service (Fig. 11 (ii)).
The function φα however converges to a higher value (see
Fig. 10c). ABS is a good means to both meet the outage
constraint and achieve fairness (Fig. 11 (iii)). The reason is
that small BSs cell edge users experience a better signal quality
during ABS subframes and the ABS ratio offers also the macro
BS an additional degree of freedom for adapting its load and
achieving fairness. This can also be seen in Fig. 12, where we
have plotted average loads over 50 realisations after LLLA has
converged. From the first to the second case, the load vector
expands because of the smaller feasible set and then shrinks
in the third case thanks to ABS.

VI. CONCLUSIONS

In this paper, a novel approach for load balancing using
CRE association technique and ABS interference manage-
ment technique is presented. Our approach exploits the near-
potential game structure and distributed learning algorithms.
We showed that unlike in the literature the load balancing
problem can be solved distributively by restricting the number
of neighbours. We provide extensive proofs of convergence
of learning algorithms. We also provide sufficient conditions
under which learning algorithms converges to the optimal
PNE. By running extensive simulations in two settings, which
are complete and partial information settings, we show that the
proposed algorithms converge within a few tens of iterations
to the optimal PNE, which is also a minimiser of a α−fairness
function of the network. The convergence speed of the BLLLA
that uses partial information is comparable to the LLLA that
uses complete information, meaning that partial information
is sufficient in practical implementations. Simulations showed
that for load balancing LLLA and BLLLA perform better than
a variant of trial and error algorithm. Finally, we showed that
by introducing ABS the outages can be reduced and a better
load balancing can be achieved.

APPENDIX

A. Proof of Rate-optimal Policy

Proof: Minimising φ0(c̄, θ̄) is equivalent to minimise the
arithmetic mean of the BSs loads, i.e.,

∑
i∈|S| ρi(c̄, θ̄). We

now prove that minimising φ0(c̄, 0) is indeed rate-optimal
policy by contradiction. Consider that at the minimum φ∗0 a
location x0 is associated with a BS j with rate rj(x0), which
is not the maximum. Then, there exists a BS k that provides
the maximum rate rk(x0). Let φk0 be the value of the objective
function when the UE at location x0 is associated with BS k.
The difference of the objective function due to the loads of
BSs j and k is

φk0 − φ∗0 =
λ(x0)

µ(x0)

(
1

rk(x0)
− 1

rj(x0)

)
< 0, (21)

which is a contradiction that φ∗0 is the minimum. Therefore,
we conclude that at φ∗0 all the locations will be served by the
BS that provide the highest rate.

B. Proof of Theorem 1

The proof is divided into the following two lemmas. The
first lemma 2 gives the property that is required for proving
the next lemma 3, which concludes the proof of the theorem 1.

Lemma 2: Let fα(r) =
∑
i∈S

r1−α
i

1−α . If r � y then there is
A > 0 large enough such that for all α ≥ A, fα(r) > fα(y).

Proof: Let α > 1. Without loss of generality, assume that
r and y are sorted in increasing order and that r1 > y1. Let
δ = r1 − y1. Then

(1− α)(fα(r)− fα(y)) =
∑
i=1...n

(
r1−α
i − y1−α

i

)
(22)

≤ r1−α
1 − y1−α

1 +
∑
i=2...n

(
r1−α
i − y1−α

i

)
(23)

≤ r1−α
1 − (r1 − δ)1−α + (n− 1)r1−α

1 −
∑
i=2...n

y1−α
i (24)

≤ nr1−α
1 − (r1 − δ)1−α. (25)

Then we have fα(r) > fα(y) if and only if

nr1−α
1 − (r1 − δ)1−α ≤ 0 (26)

⇔ log(n)

log
(
r1−δ
r1

) ≥ 1− α (27)

⇔1 +
log(n)

log(r1)− log(r1 − δ)
≤ α. (28)

Lemma 3: Let X be a compact subset of R|S|. Consider
the set

Z =
⋂
A>1

⋃
α≥A

argmax
x∈X

fα(x).

Then Z is non-empty and is made of max-min vectors in X .
Proof: Let ZA =

⋃
α≥A argmax

x∈X
fα(x). It is a decreasing

nested sequence of non-empty compact sets. By Cantor’s
intersection theorem, it is not empty and compact.

Let x∗ ∈
⋂
A>1 ZA. There is an increasing sequence α(n)

and xα(n) ∈ argmax
x∈X

fα(n)(x) with xα(n) → x∗. Assume there
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Fig. 10: Effect of outage constraint and ABS (LLLA, τ = 10−3, $ = 10−22, Ōi = 2%).
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is y � x∗. Then, by Lemma 2, there is N such that, for
every n ≥ N , fα(n)(y) > fα(n)(x

∗). But, by definition of
xα(n), fα(n)(xα(n)) ≥ fα(n)(y), which is a contradiction with
the fact that fα(n)(xα(n)) → fα(n)(x

∗), which is ensured by
Berge maximum theorem.

C. Proof of Lemma 1

Proof: Let h be a potential functions of both the games.
Since, a∗ is a PNE for G, then for all players i and ai we
have:

Ui(a
∗)− Ui(ai, a∗−i) ≤ 0, (29)

h(a∗)− h(ai, a
∗
−i) ≤ 0. (30)

The second inequality follows from Definition 3. Then for G′,
we have:

U ′i(a
∗)− U ′i(ai, a∗−i)
≤ U ′i(a∗)− U ′i(ai, a∗−i) + h(ai, a

∗
−i)− h(a∗)

≤
∣∣U ′i(a∗)− U ′i(ai, a∗−i) + h(ai, a

∗
−i)− h(a∗)

∣∣ ≤ ε. (31)

First inequality is obtained by adding a positive term and the
third inequality is by Definition 3. It follows from the third
inequality that a∗ is an ε-NE of G′.

D. Proof of Proposition 2

Proof: We prove that the game Γ$ is an ε-potential
game by verifying the definition 3 for the two BS types
(macro or small). Consider action profiles a = (ai, a−i) and
b = (a′i, a−i). First, consider a macro BS i ∈ Be. The
neighbourhood of BS i includes all the BSs in the network,
i.e., N$

i = N0
i = S. With this, we have

U$i (a)− U$i (b) = φα(a)− φα(b).

Therefore, inequality in the definition 3 holds for all macro
BSs.

Next, we show that it also holds for any small BS. Consider
small BS i ∈ Bs. The neighborhood of small BS i is given
by (14). From the objective function (8) we have

φα(a)− φα(b) =
∑
j∈S

(1− ρj(a))
1−α

α− 1
−
∑
j∈S

(1− ρj(b))1−α

α− 1
,

(32)
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Since, the action of BS i only affects its neighbour BSs we
have

φα(a)−φα(b) =
∑
j∈N0

i

(1− ρj(a))
1−α

α− 1
−
∑
j∈N0

i

(1− ρj(b))1−α

α− 1
.

(33)
It can be splited as below.

φα(a)− φα(b)

=
∑
j∈N$i

(1− ρj(a))
1−α

α− 1
+

∑
j∈N0

i \N$i

(1− ρj(a))
1−α

α− 1

−
∑
j∈N$i

(1− ρj(b))1−α

α− 1
−

∑
j∈N0

i \N$i

(1− ρj(b))1−α

α− 1
. (34)

Let denote

ξ$i (a, b) =
∑

j∈N0
i \N$i

(1− ρj(a))
1−α

α− 1
−
∑

j∈N0
i \N$i

(1− ρj(b))1−α

α− 1
.

(35)
Then using (12) the above equation can be written as below.

φα(a)− φα(b) = U$i (a)− U$i (b) + ξ$i (a, b). (36)

Then we have

|U$i (a)− U$i (b) + φα(b)− φα(a)| ≤ max
a,b∈X,i∈S

|ξ$i (a, b)| .
(37)

Hence, the inequality in the definition 3 also holds for all small
BSs. Therefore, Γ$ is an ε-potential game.

E. Proof of Theorem 3

Proof: The proof is given for LLLA only. Whereas, for
BLLLA it can be done following the similar approach. Note
that for the game Γ$ both the LLLA and BLLLA induces a
regular perturbed Markov process over the action space X =
X1 ×X2 × . . . X|S|.

The resistance R
(
a0 → a1

)
of any feasible transition ao =(

a0
i , a

0
−i
)
→ a1 =

(
a1
i , a

0
−i
)

for the LLLA is given as [47]:

R
(
a0 → a1

)
= φα(a1)− φα(Bi

(
a0
−i
)
, a0
−i)

+ ξ$i (
(
Bi
(
a0
−i
)
, a0
−i
)
, a1), (38)

where Bi
(
a0
−i
)

is the set of best response actions.
Let φ∗α be the global minimum value of the potential. Let

a∗ be a state with potential φ∗α. Action profile a∗ is an optimal
PNE of Γ0 and a ξ-NE of Γ$ according to Lemma 1.

Suppose that a minimum resistance tree, T , is rooted at an
action profile a whose potential is more than φ∗α + ε. This
means the action profile a is such that

φα(a∗)− φα(a) ≤ −ε. (39)

Since T is a rooted tree, there exists a path P from a∗ to
a of the form:

P =
{
a∗ → a1 → . . .→ am → a

}
. (40)

Consider the reverse path Pr ={
a→ am → . . .→ a1 → a∗

}
. The difference in the

resistance of the paths can be calculated using (38) and
can shown to be as given below.

R (P)−R (Pr) = φα(a)− φα(a∗)

+
∑

a,b∈P,j∈S

ξ$j (a, b)−
∑

c,d∈Pr,j∈S

ξ$j (c, d). (41)

Construct a new tree T 1 rooted at a∗ by adding the edges
of Pr to T and removing the redundant edges P . The new
tree will have the following resistance:

R(T 1) = R(T ) +R(Pr)−R(P), (42)
= R(T ) + φα(a∗)− φα(a)

+
∑

a,b∈Pr,j∈S

ξ$j (a, b)−
∑

c,d∈P,j∈S

ξ$j (c, d), (43)

< R(T ) + φα(a∗)− φα(a) + 2
∑

a,b∈Pr,j∈S

ξ, (44)

< R(T ) + φα(a∗)− φα(a) + 2 (|X| − 1) ξ, (45)
≤ R(T )− ε+ 2 (|X| − 1) ξ, (46)

where (|X| − 1) is the total number of edges in the tree T 1.
We have R(T 1) < R(T ) if ξ < ε

2(|X|−1) . Therefore, we can
construct the tree T 1 rooted at a∗ with strictly less resistance
than the tree T leading to a contradiction that T is minimal
resistance tree.

F. Proof of Corollary 2
Proof: By substituting ε = φ†α − φ∗α in Theorem 3,

we obtain that the algorithm converges to a set of states
with potential strictly less than φ∗α + (φ†α − φ∗α) = φ†α.
Hence, the only possible states are those with potential
value φ∗α. Let a∗ be one such state, and assume that
it is not a PNE of Γ$. Then there exists a BS i and
an action ai, such that: U$i (a∗) − U$i (ai, a

∗
−i) > 0.

Since φα(ai, a
∗
−i) − φα(a∗) ≥ φ†α − φ∗α = ε it follows∣∣U$i (a∗)− U$i (ai, a

∗
−i) + φα(ai, a

∗
−i)− φα(a∗)

∣∣ > ε which
is a contradiction with the game Γ$ being a ξ-potential game
with ξ < ε

2|X| .

G. Proof of Theorem 4
Proof: Let a = (ai, a−i) and b = (a′i, a−i) be two

action profiles, where BS i changes its action. Let %i(x, a) =
λ(x)

µ(x)νj(x,a) . Let denote νm = maxx,θ̄,j∈S
1

νj(x,θ̄)
, µm =

maxx
1

µ(x) , and λm = maxa∈X,j∈S
∫
x∈Dj(a)

λ(x)dx.
The parameter $ is such that (14):

j ∈ N0
i \N$

i ⇒ 0 <

∫
x
λ(x)1i,j∈Nxdx∫
x
λ(x)1i∈Nxdx

< $.

The change in load of BS j due to change in its strategy is
as below:

|ρj(a)− ρj(b)|

=

∣∣∣∣∣
∫
x∈Dj(ai,a−i)

%i(x, a)dx−
∫
x∈Dj(a′i,a−i)

%i(x, b)dx

∣∣∣∣∣ ,
=

∣∣∣∣∣
∫
x∈Dj(a)∩1i,j∈Nx

%i(x, a)dx−
∫
x∈Dj(b)∩1i,j∈Nx

%i(x, b)dx

∣∣∣∣∣ .
(47)



13

The equation (47) is valid because the change of CRE bias
of BS i affect the load of BS j only at those locations where
both BSs i and j can potentially serve the users.

|ρj(a)− ρj(b)| ≤
∫
x∈1i,j∈Nx

%i(x, a)dx

+

∫
x∈1i,j∈Nx

%i(x, b)dx. (48)

|ρj(a)− ρj(b)| ≤ νm
∫
x∈1i,j∈Nx

λ(x)

µ(x)
dx

+ νm

∫
x∈1i,j∈Nx

λ(x)

µ(x)
dx. (49)

|ρj(a)− ρj(b)| ≤ 2µmνm

∫
x∈1i,j∈Nx

λ(x)dx. (50)

≤ 2µmνm$

∫
x∈1i∈Nx

λ(x)dx, (51)

≤ 2µmνmλm$, (52)

The inequality (51) is obtained by using (14).
Let ρmax be the maximum load for a BS (assumed bounded

away from 1). Consider function gα : x → (1− x)1−α

α− 1
. Its

derivative is (1− x)−α. If 0 < x < ρmax, then f is Lipschitz
with constant (1− ρmax)−α. This implies that for any x and
y,

|gα(x)− gα(y)| ≤ (1− ρmax)−α |x− y| .

Then from (35) we have

ξ$i (a, b) =
∑

j∈N0
i \N$i

gαj (ai, a−i)− gαj (a′i, a−i),

where gαj (ai, a−i) =
(1−ρj(ai,a−i))1−α

α−1 .
All in all, we obtain

|ξi(a, b)| =

∣∣∣∣∣∣
∑

j∈N0
i \N$i

(1− ρj(a))
1−α

α− 1
− (1− ρj(b))1−α

α− 1

∣∣∣∣∣∣ ,
≤

∑
j∈N0

i \N$i

∣∣∣∣∣ (1− ρj(a))
1−α

α− 1
− (1− ρj(b))1−α

α− 1

∣∣∣∣∣ ,
≤ |S| (1− ρmax)−α |ρj(a)− ρj(b)| ,

≤ |S| (1− ρmax)−α2µmλmνm$. (53)

The constraint in Theorem 3 is satisfied if |ξ| < ε
2(|X|−1) .

Using the above upper bound of ξ we get the sufficient
condition in (19).

H. Neighborhood of macro BS

We show here that a similar neighborhood can defined for
macro BSs. Let Lj be a set of all possible locations that can
be served by BS j. It is defined as below:

Lj = {x ∈ L : j ∈ Nx} ,

where Nx is given by (13). We consider BS j as a neighbour
to macro BS i if the load of BS j is significantly effected by
the interference of macro BS i. Let denote a set of locations
Ji =

{
x ∈ L : max{θi,f} P

f
i (θi)gi(x) ≥ I th

}
and J ′i is its

complement set. Formally, we define the neighborhood of
macro BS i as:

Nϕ
i =

{
j ∈ S :

∫
x∈Lj∩Ji λ(x)dx∫
x∈Lj λ(x)dx

≥ ϕ

}
. (54)

According to the above equation, BS j is a neighbour of macro
BS i if macro BS i interference exceeds a threshold I th at more
than ϕ proportion of locations that can be served by BS j. A
similar idea for defining neighborhood based on interference is
proposed in [45]. Note that the threshold I th takes into account
the effect of ABS on SINR in (3) and load in (6). Particularly,
if max{θi,f} P

f
i (θi)gi(x) < I th then the change in average

data rate of BS j is bounded and we can come up with a similar
condition for macro BSs as in Corollary 3 for the convergence
of algorithms to optimal PNE.
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