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Deploy-As-You-Go Wireless Relay Placement:
An Optimal Sequential Decision Approach using

the Multi-Relay Channel Model
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Abstract—We use information theoretic achievable rate formulas for the multi-relay channel to study the problem of as-you-go
deployment of relay nodes. The achievable rate formulas are for full-duplex radios at the relays and for decode-and-forward relaying.
Deployment is done along the straight line joining a source node and a sink node at an unknown distance from the source. The problem
is for a deployment agent to walk from the source to the sink, deploying relays as he walks, given the knowledge of the wireless path-
loss model, and given that the distance to the sink node is exponentially distributed with known mean. As a precursor to the formulation
of the deploy-as-you-go problem, we apply the multi-relay channel achievable rate formula to obtain the optimal power allocation to
relays placed along a line, at fixed locations. This permits us to obtain the optimal placement of a given number of nodes when the
distance between the source and sink is given. Numerical work for the fixed source-sink distance case suggests that, at low attenuation,
the relays are mostly clustered close to the source in order to be able to cooperate among themselves, whereas at high attenuation
they are uniformly placed and work as repeaters. We also prove that the effect of path-loss can be entirely mitigated if a large enough
number of relays are placed uniformly between the source and the sink. The structure of the optimal power allocation for a given
placement of the nodes, then motivates us to formulate the problem of as-you-go placement of relays along a line of exponentially
distributed length, and with the exponential path-loss model, so as to minimize a cost function that is additive over hops. The hop cost
trades off a capacity limiting term, motivated from the optimal power allocation solution, against the cost of adding a relay node. We
formulate the problem as a total cost Markov decision process, establish results for the value function, and provide insights into the
placement policy and the performance of the deployed network via numerical exploration.

Index Terms—Multi-relay channel, optimal relay placement, impromptu wireless networks, as-you-go relay placement.
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1 INTRODUCTION
Wireless interconnection of devices such as smart
phones, or wireless sensors, to the wireline commu-
nication infrastructure is an important requirement.
These are battery operated, resource constrained devices.
Hence, due to the physical placement of these devices,
or due to channel conditions, a direct one-hop link to
the infrastructure “base-station” might not be feasible. In
such situations, other nodes could serve as relays in order
to realize a multi-hop path between the source device
and the infrastructure. In the wireless sensor network
context, the relays could be other wireless sensors or
battery operated radio routers deployed specifically as
relays. The relays are also resource constrained and a
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Figure 1: A source and a sink connected by a multi-hop path
comprising N relay nodes along a line.

cost might be involved in placing them. Hence, there
arises the problem of optimal relay placement. Such a
problem involves the joint optimization of node place-
ment and operation of the resulting network, where
by “operation” we mean activities such as transmission
scheduling, power allocation, and channel coding.

Our work in this paper is motivated by recent inter-
est in problems of impromptu (as-you-go) deployment of
wireless relay networks in various situations; for exam-
ple, “first responders” in emergency situations, or quick
deployment (and redeployment) of sensor networks in
large terrains, such as forests (see [3], [4], [5], [6], [7]). In
this paper, we are concerned with the situation in which
a deployment agent walks from the source node to the sink
node, along the line joining these two nodes, and places
wireless relays (in an “as-you-go” manner) so as to create
a source-to-sink multi-relay channel network with high
data rate; see Figure 1. We first consider the scenario
where the length L of the line in Figure 1 is known; the
results of this case are used to formulate the as-you-go
deployment in the case where L is a priori unknown,
but has exponential distribution with known mean L.

In order to capture the fundamental trade-offs in-
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volved in such problems, we consider an information
theoretic model. For a placement of the relay nodes
and allocation of transmission powers to these relays,
we model the “quality” of communication between the
source and the sink by the information theoretic achiev-
able rate of the multi-relay channel (see [8], [9] and [10]
for the single and multi-relay channel models). The re-
lays are equipped with full-duplex radios1, and carry out
decode-and-forward relaying. We consider scalar, mem-
oryless, time-invariant, additive white Gaussian noise
(AWGN) channels. We assume synchronous operation
across all transmitters and receivers, and consider the
exponential path-loss model for radio wave propagation.

1.1 Related Work
A formulation of the relay placement problem requires
a model of the wireless network at the physical (PHY)
and medium access control (MAC) layers. Most re-
searchers have adopted the link scheduling and interfer-
ence model, i.e., a scheduling algorithm determines radio
resource allocation (channel and power) and interference
is treated as noise (see [15]); treating interference as noise
leads to the model that simultaneous transmissions “col-
lide” at receiving nodes, and transmission scheduling
aims to avoid collisions.

However, node placement for throughput maximiza-
tion with this model is intractable because the optimal
throughput is obtained by first solving for the optimum
schedule assuming fixed node locations, followed by an
optimization over those locations. Hence, with such a
model, there appears to be little work on the problem
of jointly optimizing the relay node placement and the
transmission schedule. Reference [16] is one such work
where the authors considered placing a set of nodes in
an existing network such that a certain network utility
is optimized subject to a set of linear constraints on link
rates, under the link scheduling and interference model.
They posed the problem as one of geometric program-
ming assuming exponential path-loss, and proposed a
distributed solution. The authors of [17] consider relay
placement for utility maximization, assuming there are
several source nodes, sink nodes and a few candidate
locations for placing relays; they ignore interference
because of highly directional antennas used in 60 GHz
mmWave networks, which may not always be valid.
Relay placement for capacity enhancement has been
studied in [18], but there interference is mitigated by
scheduling transmissions over multiple channels.

On the other hand, an information theoretic model
for a wireless network often provides a closed-form
expression for the channel capacity, or at least an achiev-
able rate region. These results are asymptotic, and make
idealized assumptions such as full-duplex radios, per-
fect interference cancellation, etc., but provide algebraic
expressions that can be used to formulate tractable opti-
mization problems which can provide useful insights. In
the context of optimal relay placement, some researchers

1. Full-duplex radios are becoming practical; see [11], [12], [13], [14].

have already exploited this approach. Thakur et al., in
[19], report on the problem of placing a single relay node
to maximize the capacity of a broadcast relay channel in
a wideband regime. Lin et al., in [20], numerically solve
the problem of a single relay node placement, under
power-law path loss and individual power constraints at
the source and the relay; however, our work is primarily
focused on multi-relay placement, under the exponential
path-loss model and a sum power constraint among the
nodes. The linear deterministic channel model ([21]) is
used by Appuswamy et al. in [22] to study the problem
of placing two or more relay nodes along a line so as to
maximize the end-to-end data rate. Our present paper
is in a similar spirit; however, we use the achievable
rate formulas for the N -relay channel (with decode and
forward relays) to study the problem of placing relays
on a line having length L, under a sum power constraint
over the nodes.

The most important difference of our paper with the
literature reported above is that we address the problem
of sequential placement of relay nodes along a line of
an unknown random length. This paper extends our
previous work in [1], which presents the analysis for
the case of given L and N ; the study under given L
and N is a precursor to the formulation of as-you-go
deployment problem, since it motivates an additive cost
structure that is essential for the formulation of the
sequential deployment problem as a Markov decision
process (MDP).

The deploy-as-you-go problem has been addressed by
previous researchers. For example, Howard et al., in [4],
provide heuristic algorithms for incremental deployment
of sensors in order to cover a deployment area. Souryal
et al., in [3], propose heuristic deployment algorithms
for the problem of impromptu wireless network deploy-
ment, with an experimental study of indoor RF link
quality variation. The authors of [5] propose a collab-
orative deployment method for multiple deployment
agents, so that the contiguous coverage area of relays is
maximized subject to a total number of relays constraint.
However, until the work in [23] and [6], there appears
to have been no effort to rigorously formulate as-you-
go deployment problem in order to derive optimal de-
ployment algorithms. The authors of [23] and [6] used
MDP based formulations to address the problem of
placing relay nodes sequentially along a line and along
a random lattice path, respectively. The formulations in
[23] and [6] are based on the so-called “lone packet traffic
model" under which, at any time instant, there can be no
more than one packet traversing the network, thereby
eliminating contention between wireless links. This work
was later extended in [7] to the scenario where the traffic
is still lone packet, but a measurement-based approach
is employed to account for the spatial variation of link
qualities due to shadowing.

In this paper, we consider as-you-go deployment
along a line, but move away from the lone-packet traffic
assumption by employing information theoretic achiev-
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able rate formulas (for full-duplex radios and decode-
and-forward relaying). We assume exponential path-loss
model (see [24] and Section 6.1). To the best of our
knowledge, there is no prior work that considers as-you-
go deployment under this physical layer model.

1.2 Our Contribution
• Optimal Offline Deployment: Given the location

of N full-duplex relays to connect a source and a
sink separated by a given distance L, and under
the exponential path-loss model and a sum power
constraint among the nodes, the optimal power
split among the nodes and the achievable rate are
expressed (Theorem 1) in terms of the channel gains.
We find expression for optimal relay location in the
single relay placement problem (Theorem 2). For the
N relay placement problem, numerical study shows
that, the relay nodes are clustered near the source
at low attenuation and are placed uniformly at high
attenuation. Theorem 5 shows that, by placing large
number of relays uniformly, we can achieve a rate
arbitrarily close to the AWGN capacity. Only this
part of our current paper was published in the
conference version [1].

• Optimal As-You-Go Deployment: In Section 4, we
consider the problem of placing relay nodes in a
deploy-as-you-go manner, so as to connect a source
and a sink separated by an unknown distance,
modeled as an exponentially distributed random
variable L. Specifically, the problem is to start from
a source, and walk along a line, placing relay nodes
as we go, until the line ends, at which point the
sink is placed. With a sum power constraint, the
aim is to maximize a capacity limiting term derived
from the deployment problem for known L, while
constraining the expected number of relays. We
“relax” the expected number of relays constraint via
a Lagrange multiplier, and formulate the problem as
a total cost MDP with uncountable state space and
non-compact action sets. We prove the existence of
an optimal policy and convergence of value iteration
(Theorem 7); these results for uncountable state
space and non-compact action space are not evident
from standard literature. We study properties of the
value function analytically. This is the first time that
the as-you-go deployment problem is formulated to
maximize the end-to-end data rate under the full-
duplex multi-relay channel model.

• Numerical Results on As-You-Go Deployment: In
Section 5, we study the policy structure numer-
ically. We also demonstrate numerically that the
proposed as-you-go algorithm achieves an end-to-
end data rate sufficiently close to the maximum
possible achievable data rate for offline placement.
This is particularly important since there is no other
benchmark in the literature, with which we can
make a fair comparison of our policy.

• The material in Section 4 and Section 5 were absent
in the conference version [1].

1.3 Organization of the Paper
In Section 2, we describe our system model and notation.
In Section 3, we address the problem of relay place-
ment on a line of known length. Section 4 deals with
the problem of as-you-go deployment along a line of
unknown random length. Numerical work on as-you-
go deployment has been presented in Section 5. Some
discussions are provided in Section 6. Conclusions are
drawn in Section 7.

2 SYSTEM MODEL AND NOTATION

2.1 The Multi-Relay Channel
The multi-relay channel was studied in [10] and [9] and
is an extension of the single relay model presented in
[8]. We consider a network deployed on a line with a
source node and a sink node at the end of the line, and N
full-duplex relay nodes as shown in Figure 1. The relay
nodes are numbered as 1, 2, · · · , N . The source and sink
are indexed by 0 and N+1, respectively. The distance of
the k-th node from the source is denoted by yk := r1 +r2 +
· · ·+ rk. Thus, yN+1 = L. As in [10] and [9], we consider
the scalar, time-invariant, memoryless, AWGN setting.

We use the model that a symbol transmitted by node i
is received at node j after multiplication by the (positive,
real valued) channel gain hi,j (an assumption often made
in the literature, see e.g., [10] and [25]). The power gain
from Node i to Node j is denoted by gi,j = h2

i,j . We
define gi,i = 1 and hi,i = 1. The Gaussian additive noise
at any receiver is independent and identically distributed
from symbol to symbol and has variance σ2.

2.2 An Inner Bound to the Capacity
For the multi-relay channel, we denote the symbol trans-
mitted by the i-th node at time t (t is discrete) by Xi(t)
for i = 0, 1, · · · , N . Zk(t) ∼ N (0, σ2) is the additive white
Gaussian noise at node k and time t, and is assumed to
be independent and identically distributed across k and t.
Thus, at symbol time t, node k, 1 ≤ k ≤ N + 1 receives:

Yk(t) =
∑

j∈{0,1,··· ,N},j 6=k

hj,kXj(t) + Zk(t) (1)

An inner bound to the capacity of this network, under
any path-loss model, is given by (see [10]):

R = min
1≤k≤N+1

C

(
1

σ2

k∑
j=1

(

j−1∑
i=0

hi,k
√
Pi,j)

2

)
(2)

where C(x) := 1
2 log2(1+x), and node i transmits to node

j at power Pi,j (expressed in mW).
In Appendix A, we provide a descriptive overview of

the coding and decoding scheme proposed in [10]. A
sequence of messages are sent from the source to the
sink; each message is encoded in a block of symbols
and transmitted by using the relay nodes. The scheme
involves coherent transmission by the source and relay
nodes (this requires symbol-level synchronization among
the nodes), and successive interference cancellation at the
relay nodes and the sink. A node receives information
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about a message in two ways (i) by the message being
directed to it cooperatively by all the previous nodes,
and (ii) by overhearing previous transmissions of the
message to the previous nodes. Thus node k receives
codes corresponding to a message k times before it
attempts to decode the message (a discussion on the
practical feasibility of full-duplex decode-and-forward
relaying scheme is provided in Section 6.3). Note that,

C

(
1
σ2

∑k
j=1(

∑j−1
i=0 hi,k

√
Pi,j)

2

)
in (2), for any k, denotes

a possible rate that can be achieved by node k from the
transmissions from nodes 0, 1, · · · , k− 1. The smallest of
these terms becomes the bottleneck, see (2).

For the single relay channel, N = 1. Thus, by (2), an
achievable rate is given by (see also [8]):

R = min

{
C

(
g0,1P0,1

σ2

)
,

C

(
g0,2P0,1 + (h0,2

√
P0,2 + h1,2

√
P1,2)2

σ2

)}
(3)

Here, the first term in the min{·, ·} of (3) is the
achievable rate at node 1 (i.e., the relay node) due to
the transmission from the source. The second term in
the min{·, ·} corresponds to the possible achievable rate
at the sink node due to direct coherent transmission
from the source and the relay and due to the overheard
transmission from the source to the relay. The higher
the channel attenuation, the less will be the contribution
of farther nodes, “overheard” transmissions become less
relevant, and coherent transmission reduces to a simple
transmission from the previous relay. The system is then
closer to simple store-and-forward relaying.

The authors of [10] have shown that any rate strictly
less than R is achievable through the coding and de-
coding scheme. This achievable rate formula can also
be obtained from the capacity formula of a physically
degraded multi-relay channel (see [9]), since the capacity
of the degraded relay channel is a lower bound to the
actual channel capacity. In this paper, we will seek to
optimize R in (2) over power allocations to the nodes and
the node locations, keeping in mind that R is a lower bound
to the actual capacity. We denote the value of R optimized
over power allocation and relay locations by R∗.

2.3 Path-Loss Model
We model the power gain via the exponential path-loss
model: the power gain at a distance r is e−ρr where
ρ > 0. This is a simple model used for tractability (see
[16], [22]) and [26, Section 2.3] for prior work assuming
exponential path-loss). However, for propagation sce-
narios involving randomly placed scatterers (as would
be the case in a dense urban environment, or a forest,
for example) analytical and experimental support has
been provided for the exponential path-loss model (a
discussion has been provided in Section 6.1). We also
discuss in Section 6.4 how the insights obtained from the
results for exponential path-loss can be used for power-
law path-loss (power gain at a distance r is r−η , η > 0).

Deployment with other path-loss models is left in this
paper as a possible future work.

Under exponential path-loss, the channel gains and
power gains in the line network become multiplicative,
e.g., hi,i+2 = hi,i+1hi+1,i+2 and gi,i+2 = gi,i+1gi+1,i+2 for
i ∈ {0, 1, · · · , N − 1}.

We discuss in Section 6.2 how shadowing and fading
can be taken care of in our model, by providing a fade-
margin in the power at each transmitter.

2.4 Motivation for the Sum Power Constraint

In this paper we consider the sum power constraint∑N
i=0 Pi = PT (in mW) over the source and the relays.

This constraint has the following motivation. Let the
fixed power expended in a relay (for reception and driv-
ing the electronic circuits) be denoted by Prcv (expressed
in mW), and the initial battery energy in each node be
denoted by E (in mJ unit). The information theoretic
approach utilized in this paper requires that the nodes in
the network are always on. Hence, the lifetime of node
i, 1 ≤ i ≤ N , is τi = E

Pi+Prcv
, the lifetime of the source

is τ0 = E
P0

, and that of the sink is τN+1 = E
Prcv

. The
rate of battery replacement at node i is 1

τi
. Hence, the

rate at which we have to replace the batteries in the
network is

∑N+1
i=0

1
τi

= 1
E (
∑N
i=0 Pi + (N + 1)Prcv). The

depletion rate Prcv
E is inevitable at any node, and it does

not affect the achievable data rate. Hence, in order to
reduce the battery replacement rate, we must reduce the
sum transmit power in the entire network.

3 PLACEMENT ON A LINE OF KNOWN LENGTH

As a precursor to addressing the deploy-as-you-go prob-
lem over a line of unknown length, in this section we
solve the problem of power constrained deployment of
a given number of relays on a line of known length. We will
often refer to this problem as offline deployment problem.
The results of this section provide (i) first insights into
the relay placements we obtain using the multi-relay
channel model, (ii) a starting point for the formulation
of as-you-go deployment problem, and (iii) a benchmark
with which we can compare the performance of our as-
you-go deployment algorithm.

3.1 Optimal Power Allocation

In this section, we consider the optimal placement of
relay nodes on a line of given length, L, so as to to
maximize R (see (2)), subject to a total power constraint
on the source and relay nodes given by

∑N
i=0 Pi = PT .

We will first maximize R in (2) over Pi,j , 0 ≤ i <
j ≤ (N + 1) for any given placement of nodes (i.e.,
given y1, y2, · · · , yN ). This will provide an expression of
achievable rate in terms of channel gains, which has to
be maximized over y1, y2, · · · , yN . Let γk :=

∑k−1
i=0 Pi,k

for k ∈ {1, 2, · · · , N + 1} (expressed in mW). Hence, the
sum power constraint becomes

∑N+1
k=1 γk = PT .

Theorem 1: (i) Under the exponential path-loss
model, for fixed location of relay nodes, the optimal
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power allocation that maximizes the achievable
rate for the sum power constraint is given by:

Pi,j =

{
gi,j∑j−1
l=0 gl,j

γj ∀0 ≤ i < j ≤ (N + 1)

0, if j ≤ i
(4)

where

γ1 =
PT

1 + g0,1

∑N+1
k=2

(g0,k−1−g0,k)

g0,kg0,k−1

∑k−1
l=0

1
g0,l

(5)

γj =

g0,1
(g0,j−1−g0,j)

g0,jg0,j−1
∑j−1
l=0

1
g0,l

1 + g0,1

∑N+1
k=2

(g0,k−1−g0,k)

g0,kg0,k−1

∑k−1
l=0

1
g0,l

PT ∀ j ≥ 2

(ii) The achievable rate optimized over the power allo-
cation for a given placement of nodes is given by:

RoptPT
(y1, y2, · · · , yN ) = C

( PT
σ2

1
g0,1

+
∑N+1
k=2

(g0,k−1−g0,k)
g0,kg0,k−1

∑k−1
l=0

1
g0,l

)
(6)

Proof: The basic idea is to choose the power levels
(i.e., Pi,j , 0 ≤ i < j ≤ N + 1) in (2) so that all the terms
in the min{·} in (2) become equal. We provide explicit
expressions for Pi,j , 0 ≤ i < j ≤ N+1 and the achievable
rate (optimized over power allocation) in terms of the
power gains. See Appendix B for the detailed proof. A
result on the equality of certain terms under optimal
power allocation has also been proved in [9] for the
coding scheme used in [9]. But it was proved in the
context of a degraded Gaussian multi-relay channel, and
the proof depends on an inductive argument, whereas
our proof utilizes LP (linear programming) duality.

Recalling the exponential path-loss parameter ρ, and
the source-sink distance L, let us define λ := ρL, which
can be treated as a measure of attenuation in the line.

Let us now comment on the results of Theorem 1:
• In order to maximize RoptPT

(y1, y2, · · · , yN ), we
need to place the relay nodes such that 1

g0,1
+∑N+1

k=2
(g0,k−1−g0,k)

g0,kg0,k−1

∑k−1
l=0

1
g0,l

is minimized. This quantity

is viewed as the net attenuation the power PT faces.
• When no relay is placed, the attenuation is eλ. The

ratio of attenuation with no relay and attenuation
with relays is called the “relaying gain” G(N,λ).

G(N,λ) :=
eλ

1
g0,1

+
∑N+1
k=2

(g0,k−1−g0,k)

g0,kg0,k−1

∑k−1
l=0

1
g0,l

(7)

Rate is increasing with the number of relays, and is
bounded above by C(PTσ2 ). Hence, G(N,λ) ∈ [1, eλ].
Also, note that G(N,λ) does not depend on PT .

• By Theorem 1, we have Pk,j ≥ Pi,j for i < k < j.
• Note that we have derived Theorem 1 using the fact

that g0,k is nonincreasing in k. If there exists some
k ≥ 1 such that g0,k = g0,k+1, i.e, if k-th and (k +
1)-st nodes are placed at the same position, then
γk+1 = 0, i.e., the nodes i < k do not direct any
power specifically to relay k+1. However, relay k+
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versus λ.

1 can decode the symbols received at relay k, and
those transmitted by relay k. Then relay (k+ 1) can
transmit coherently with the nodes l ≤ k to improve
effective received power in the nodes j > k + 1.

3.2 Optimal Placement of a Single Relay Node
In the following theorem, we derive the optimal power
allocation, node location and data rate when a single
relay is placed.

Theorem 2: For the single relay node placement prob-
lem with sum power constraint and exponential path-
loss model, the normalized optimum relay location y∗1

L ,
power allocation and optimized achievable rate are
given as follows:2

(i) For λ ≤ log 3, y∗1
L = 0, P0,1 = 2PT

eλ+1
, P0,2 = P1,2 =

eλ−1
eλ+1

PT
2 and R∗ = C

(
2PT

(eλ+1)σ2

)
.

(ii) For λ ≥ log 3, y∗1
L = 1

λ log
(√

eλ + 1− 1
)

, P0,1 = PT
2 ,

P0,2 = 1√
eλ+1

PT
2 , P1,2 =

√
eλ+1−1√
eλ+1

PT
2 and R∗ =

C

(
1√

eλ+1−1

PT
2σ2

)
Proof: See Appendix C.

Discussion: It is easy to check that R∗ obtained in
Theorem 2 is strictly greater than the AWGN capacity
C
(
PT
σ2 e
−λ) for all λ > 0. This happens because the source

and relay transmit coherently to the sink. R∗ becomes
equal to the AWGN capacity only at λ = 0. At λ = 0,
we do not use the relay since the sink can decode any
message that the relay is able to decode.

The variation of y∗1
L and P0,1

PT
with λ has been shown in

Figure 2. We observe that (from Figure 2 and Theorem 2)
limλ→∞

y∗1
L = 1

2 , limλ→∞ P0,2 = 0 and limλ→0 P0,1 = PT .
For large values of λ, source and relay cooperation pro-
vides negligible benefit since source to sink attenuation is
very high. So it is optimal to place the relay at a distance
L
2 . The relay works as a repeater which forwards data
received from the source to the sink. For small λ, the
gain obtained from coherent transmission is dominant,
and, in order to receive sufficient information (required
for coherent transmission) from the source, the relay is
placed near the source.

3.3 Optimal Placement for a Multi-Relay Channel
As we discussed earlier, we need to place N relay nodes
such that 1

g0,1
+
∑N+1
k=2

(g0,k−1−g0,k)

g0,kg0,k−1

∑k−1
l=0

1
g0,l

is minimized.

2. log(·) in this paper will mean the natural logarithm unless the
base is specified.
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Figure 3: N relays, exponential path-loss model: depiction of the optimal relay positions for N = 2, 3, 5 for various values of λ.
On any line, the leftmost dot is the source node, the rightmost dot is the sink, and the intermediate dots denote the relays.

Here g0,k = e−ρyk . We have the constraint 0 ≤ y1 ≤ y2 ≤
· · · ≤ yN ≤ yN+1 = L. Now, writing zk = eρyk , and
defining z0 := 1, we arrive at the following problem:

min

{
z1 +

N+1∑
k=2

zk − zk−1∑k−1
l=0 zl

}
s.t 1 ≤ z1 ≤ · · · ≤ zN ≤ zN+1 = eλ (8)

The objective function is convex in each of the variables
z1, z2, · · · , zN . The objective function is sum of linear
fractionals, and the constraints are linear.

Remark: From optimization problem (8) we observe
that optimum z1, z2, · · · , zN depend only on λ := ρL.
Since zk = eλ

yk
L , the normalized optimal distance of

relays from the source depend only on λ and N .
Theorem 3: For fixed ρ, L and σ2, the optimized achiev-

able rate R∗ for a sum power constraint strictly increases
with the number of relay nodes.

Proof: See Appendix D.
Theorem 4: For any fixed number of relays N ≥ 1,

G(N,λ) is increasing in λ.
Proof: See Appendix E.

A numerical study of multi-relay placement: We
discretize the interval [0, L] and run a search program
to find normalized optimal relay locations for different
values of λ and N . The results are summarized in
Figure 3.

We observe that at low attenuation (small λ), relay
nodes are clustered near the source node and are often
at the source node, whereas at high attenuation (large λ)
they are almost uniformly placed along the line. For large
λ, the effect of long distance between any two adjacent
nodes dominates the gain obtained by coherent relaying.
Hence, it is beneficial to minimize the maximum distance
between any two adjacent nodes and thus multihopping
is a better strategy in this case. For small λ, the gain
obtained by coherent transmission is dominant. In order
to allow this, relays should be able to receive sufficient
information from their previous nodes. Thus, they tend
to be clustered near the source.

In Figure 4 we plot the relaying gain G(N,λ) in dB
vs. the number of relays N , for various values of λ. As
proved in Theorem 3, we see that G(N,λ) increases with
N for fixed λ. On the other hand, G(N,λ) increases with
λ for fixed N , as proved in Theorem 4.

3.4 Uniformly Placed Relays, Large N
When the relays are uniformly placed, the behaviour
of RoptPT

(y1, · · · , yN ) (called RN in the next theorem) for

0 10 20 30 40 50
0

2

4

6

8

10

12

N

G
 (i

n 
dB

)

 

 

λ=1

λ=2

λ=3

Figure 4: G(N,λ) vs N for total power constraint.

large number of relays is captured by the following:
Theorem 5: For exponential path-loss and sum power

constraint, if N relay nodes are placed uniformly be-
tween the source and the sink, resulting in RN achiev-
able rate, then limN→∞RN = C

(
PT
σ2

)
.

Proof: See Appendix F.
Remark: From Theorem 5, it is clear that we can achieve

a rate arbitrarily close to C(PTσ2 ) (i.e., the effect of path-
loss can completely be mitigated) by placing a large
enough number of relay nodes. In this context, we
would like to mention that the variation of broadcast
capacity as a function of the number of nodes N (located
randomly inside a unit square) was studied in [27]; but
the broadcast capacity in their paper increases with N
since they assume per-node power constraint.

4 AS-YOU-GO DEPLOYMENT OF RELAYS ON
A LINE OF UNKNOWN LENGTH

Having developed the problem of placing a given num-
ber of relays over a line of fixed, given length, we
now turn to the deploy-as-you-go problem. An agent
walks along a line, starting from the source and heading
towards the sink which is at an unknown distance from
the source location, deploying relays as he goes, so as
to achieve a multi-relay network when he encounters
the sink location (and places the sink there). We model
the distance from the source to sink as an exponentially
distributed random variable with mean L = 1

β .3 The
deployment objective is to achieve a high data rate
from the source to the sink, subject to a total power
constraint and a constraint on the expected number of
relays placed (note that, the number of relay nodes, N ,
is a random variable here, due to the randomness in L).
Using the rate expression from Theorem 1, we formulate
the problem as a total cost MDP.

3. A motivation for the use of the exponential distribution, given
the prior knowledge of the mean length L, is that it is the maximum
entropy continuous probability density function with the given mean.
By using the exponential distribution, we are leaving the length of the
line as uncertain as we can, given the prior knowledge of its mean.
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Such a deployment problem could be motivated by a
situation where it is required to place a sensor (say, a
video camera) to monitor an event or an object from
a safe distance (e.g., the battlefront in urban combat,
or a suspicious object that needs to be detonated, or a
group of animals in a forest). In such a situation, the
deployment agent, after placing the sensor, walk away
from the scene of the event, along a forest trail, or a road,
or a building corridor, placing relays as he walks, until
a suitable safe sink location is found, in such a way that
the number of relays is kept small while the end-to-end
data rate is maximized.

4.1 Formulation as an MDP

We now formulate the as-you-go deployment problem
as an MDP.

4.1.1 Deployment Policies

In the as-you-go placement problem, the person carries
a number of nodes and places them as he walks, under
the control of a placement policy. A deployment policy
π is a sequence of mappings {µ1, µ2, µ3, · · · } from the
state space to the action space; at the k-th decision
instant (i.e., after placing the (k−1)-st relay), µk provides
the distance at which the next relay should be placed
(provided that the line does not end before that point),
given the system state which is a function of the locations
of previously placed nodes. Thus, the decisions are made
based on the locations of the relays placed earlier. The
first decision instant is the start of the line, and the
subsequent decision instants are the placement points of
the relays. Let Π denote the set (possibly uncountable)
of all deployment policies. Let Eπ denote the expectation
under policy π.

4.1.2 The Unconstrained Problem

We recall from (6) that for a fixed length L of the line
and a fixed N , eρy1 +

∑N+1
k=2

eρyk−eρyk−1

1+eρy1+···+eρyk−1 has to be
minimized in order to maximize RoptPT

(y1, y2, · · · , yN ).
eρy1 +

∑N+1
k=2

eρyk−eρyk−1

1+eρy1+···+eρyk−1 is basically a scaling factor
which captures the effect of attenuation and relaying on
the maximum possible SNR PT

σ2 .
Let ξ > 0 be the cost of placing a relay. We are

interested in solving the following problem:

inf
π∈Π

Eπ

((
eρy1 +

N+1∑
k=2

eρyk − eρyk−1

1 + eρy1 + · · ·+ eρyk−1

)
+ ξN

)
(9)

The “cost” function inside the outer parentheses in (9)
has two terms, one is the denominator of G(N,λ) in (7),
and the other is a linear multiple of the number of relays.
Thus, the cost function captures the tradeoff between the
cost of placing relays (quantified as ξ per relay), and the
need to achieve high end-to-end data rate by making
the denominator of G(N,λ) small. Note that, due to the

randomness in the length of the line, the yk, k ≥ 1, and
N are all random variables.4

We will see in Theorem 7 that an optimal policy always
exists for this problem.

4.1.3 The Constrained Problem
Solving the problem in (9) also helps in solving the
following constrained problem:

inf
π∈Π

Eπ

(
eρy1 +

N+1∑
k=2

eρyk − eρyk−1

1 + eρy1 + · · ·+ eρyk−1

)
s.t., Eπ(N) ≤M (10)

where M > 0 is a constraint on the expected number
of relays. 5 The following standard result (see [28, The-
orem 4.3]) gives the optimal ξ∗:

Lemma 1: If there exists ξ∗ > 0 and a policy π∗ξ∗ ∈ Π
such that π∗ξ∗ is an optimal policy for the unconstrained
problem (9) under ξ∗ and Eπ∗

ξ∗
N = M , then π∗ξ∗ is also

optimal for the constrained problem (10).
The motivation behind formulation (10) is as follows.

Suppose that one seeks to solve the following problem:

supπEπ log2

(
1 +

PT
σ2

eρy1 +
∑N+1
k=2

eρyk−eρyk−1

1+eρy1+···+eρyk−1

)
s.t., Eπ(N) ≤M (11)

Since log2(1 + 1
x ) is convex in x, we can argue by

Jensen’s inequality that by solving (10) we actually find
a relay placement policy that maximizes a lower bound
to the expected achievable data rate obtained from (11).
But formulation (10) (and hence formulation (9), by
Lemma 1) allows us to write the objective function as a
summation of hop-costs; this motivates us to formulate
the as-you-go deployment problem as an MDP, resulting
in a substantial reduction in policy computation. How-
ever, in Section 5, we will show numerically that solving
(10) is a reasonable approach to deal with the computa-
tional complexity of (11); we will see that formulation
(10) allows us to achieve a reasonable performance.

We now formulate the above “as-you-go" relay place-
ment problem (9) as a total cost Markov decision process.

4.1.4 State Space, Action Space and Cost Structure
Let us define s0 := 1, sk := eρyk

1+eρy1+···+eρyk ∀ k ≥ 1. Also,
recall that rk+1 = yk+1− yk. Thus, we can rewrite (9) as:

inf
π∈Π

Eπ

(
1 +

N∑
k=0

sk(eρrk+1 − 1) + ξN

)
(12)

When the person starts walking from the source along
the line, the state of the system is set to s0 := 1. At

4. Recall Section 2.4. The battery depletion rate Prcv
E

of a node due
to the receive power alone can be absorbed into the relay cost ξ.

5. The constraint on the mean number of relays can be justified if we
consider the relay deployment problem for multiple source-sink pairs
over several lines of mean length L, given a large pool of relays, and
we are only interested in keeping small the total number of relays over
all these deployments.
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this instant the placement policy provides the location
at which the first relay should be placed. The person
walks towards the prescribed placement point. If the sink
placement location is encountered before reaching this
point, the sink is placed; if not, then the first relay is
placed at the placement point. In general, the state after
placing the k-th relay is denoted by sk (a function of
the location of the nodes up to the k-th instant), for k =
1, 2, · · · . At state sk, the action is the distance rk+1 where
the next relay has to be placed (action ∞ means that no
further relay will be placed). If the line ends before this
distance, the sink node has to be placed at the end. The
randomness is coming from the random residual length of the
line. Let lk denote the residual length at the k-th instant.

With this notation, the state of the system evolves as:

sk+1 =

{
ske

ρrk+1

1+ske
ρrk+1 , if lk > rk+1,

EOL, else.
(13)

Here EOL denotes the end of the line, i.e., the termina-
tion state.

The single stage cost (for problem (12)) for state s,
action a and residual length l, is:

c(s, a, l) =

{
ξ + s(eρa − 1), if l > a,

s(eρl − 1), else.
(14)

Also, c(EOL, a, ·) = 0 for all a.
From (13), it is clear that the next state sk+1 depends

on the current state sk, the current action rk+1 and the
residual length of the line. Since the length of the line
is exponentially distributed, from any placement point,
the residual line length is exponentially distributed, and
independent of the history of the process. The cost
incurred at the k-th decision instant is given by (14),
which depends on sk, rk+1 and lk.

Hence, our formulation in (12) is an MDP with state
space S := (0, 1] ∪ {EOL} and action space A ∪ {∞}
where A := [0,∞).

Remark: An optimal policy (if it exists) for the problem
(9) will be used to place relay nodes along a line whose
length is a sample from an exponential distribution with
mean 1

β . After the deployment is over, the power PT will
be shared optimally among the source and the deployed
relay nodes (according to Theorem 1).

4.2 Optimal Value Function
Suppose sk = s for some k ≥ 0. Then, the optimal value
function (cost-to-go) at state s is defined by:

Jξ(s) = inf
π∈Π

E

( ∞∑
n=k

c(sn, an, ln)|sk = s

)
If we decide to place the next relay at a distance a <∞
and follow the optimal policy thereafter, the expected
cost-to-go at a state s ∈ (0, 1] becomes:

∫ a

0
βe−βzs(eρz−1)dz+e−βa

(
s(eρa−1)+ξ+Jξ

(
seρa

1 + seρa

))
(15)

The first term in (15) corresponds to the case in which
the line ends at a distance less than a and we are forced
to place the sink node. The second term corresponds to
the case where the residual length of the line is greater
than a and a relay is placed at a distance a.

Note that our MDP has an uncountable state space
S = (0, 1] ∪ {EOL} and a non-compact action space
A = [0,∞) ∪ {∞}. Several technical issues arise in this
kind of problems, such as the existence of optimal or ε-
optimal policies, measurability of the policies, etc. We,
therefore, invoke the results provided by Schäl [29],
which deal with such issues. Our problem is one of min-
imizing total, undiscounted, non-negative costs over an
infinite horizon. Equivalently, in the context of [29], we
have a problem of total reward maximization where the
rewards are the negative of the costs. Thus, our problem
specifically fits into the negative dynamic programming
setting of [29] (i.e., the N case where single-stage rewards
are non-positive).

Now, the state EOL is absorbing. Also, no action is
taken at this state and the cost at this state is 0. Hence,
we can think of this state as state 0 in order to make our
state space a Borel subset of the real line.

Theorem 6: [[29], Equation (3.6)] The optimal value
function Jξ(·) satisfies the Bellman equation. �

Thus, Jξ(·) satisfies the following Bellman equation for
each s ∈ (0, 1]:

Jξ(s) = min

{
inf
a≥0

[ ∫ a

0
βe−βzs(eρz − 1)dz

+e−βa
(
s(eρa − 1) + ξ + Jξ

(
seρa

1 + seρa

))]
,∫ ∞

0
βe−βzs(eρz − 1)dz

}
(16)

where the second term inside min{·, ·} is the cost of
not placing any relay (i.e., a =∞).

We analyze the MDP for β > ρ and β ≤ ρ.

4.2.1 Case I (β > ρ)
We observe that the cost of not placing any relay (i.e.,
a =∞) at state s ∈ (0, 1] is given by:∫ ∞

0

βe−βzs(eρz − 1)dz = θs

where θ := ρ
β−ρ (using the fact that β > ρ). Since not

placing a relay (i.e., a =∞) is a possible action for every
s, it follows that Jξ(s) ≤ θs.

The cost in (15), upon simplification, can be written
as:

θs+ e−βa
(
− θseρa + ξ + Jξ

(
seρa

1 + seρa

))
(17)

Since Jξ(s) ≤ θ for all s ∈ (0, 1], the expression in (17)
is strictly less that θs for large enough a < ∞. Hence,
according to (16), it is not optimal to not place any relay
and the Bellman equation (16) can be rewritten as:

Jξ(s) = θs+ inf
a≥0

e−βa
(
− θseρa + ξ + Jξ

(
seρa

1 + seρa

))
(18)
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4.2.2 Case II (β ≤ ρ)
Here the cost in (15) is ∞ if we do not place a relay
(i.e., if a = ∞). Let us consider a policy π1 where we
place the next relay at a fixed distance 0 < a < ∞ from
the current relay, irrespective of the current state. If the
residual length of the line is z at any state s, we will
place less than z

a additional relays, and for each relay a
cost less than (ξ + (eρa − 1)) is incurred (since s ≤ 1).
At the last step when we place the sink, a cost less than
(eρa − 1) is incurred. Thus, the value function of this
policy is upper bounded by:∫ ∞

0

βe−βz
z

a
(ξ + (eρa − 1))dz + (eρa − 1)

=
1

βa
(ξ + (eρa − 1)) + (eρa − 1) (19)

Hence, Jξ(s) ≤ 1
βa (ξ + (eρa − 1)) + (eρa − 1) <∞. Thus,

by the same argument as in the case β > ρ, the minimizer
in the Bellman equation lies in [0,∞), i.e., the optimal
placement distance lies in [0,∞). Hence, (16) can be
rewritten as:

Jξ(s) = inf
a≥0

{∫ a

0
βe−βzs(eρz − 1)dz +

e−βa
(
s(eρa − 1) + ξ + Jξ

(
seρa

1 + seρa

))}
(20)

4.3 Upper Bound on the Optimal Value Function
Proposition 1: If β > ρ, then Jξ(s) < θs for all s ∈ (0, 1].

Proof: We know that Jξ(s) ≤ θs ≤ θ. Now, let us
consider the Bellman equation (18). It is easy to see
that (−θseρa + ξ + Jξ(

seρa

1+seρa )) is strictly negative for
sufficiently large a. Hence, the R.H.S of (18) is strictly
less than θs.

Corollary 1: For β > ρ, lims→0 Jξ(s)→ 0 for any ξ > 0.
Proof: Follows from Proposition 1.

Proposition 2: If β > 0 and ρ > 0 and 0 < a <∞, then
Jξ(s) <

1
βa (ξ + (eρa − 1)) + (eρa − 1) for all s ∈ (0, 1].

Proof: Follows from (19), since the analysis is valid
even for β > ρ.

4.4 Convergence of the Value Iteration
The value iteration for our MDP is given by:

J
(k+1)
ξ (s) = inf

a≥0

{∫ a

0
βe−βzs(eρz − 1)dz + e−βa

(
s(eρa − 1)

+ξ + J
(k)
ξ

(
seρa

1 + seρa

))}
(21)

Here J
(k)
ξ (s) is the k-th iterate of the value iteration.

Let us start with J
(0)
ξ (s) := 0 for all s ∈ (0, 1]. We set

J
(k)
ξ (EOL) = 0 for all k ≥ 0. J (k)

ξ (s) is the optimal value
function for a problem with the same single-stage cost
and the same transition structure, but with the horizon
length being k (instead of infinite horizon as in our
original problem) and 0 terminal cost. Here, by horizon
length k, we mean that there are k number of relays
available for deployment.

Let Γk(s) be the set of minimizers of (21) at the k-th
iteration at state s, if the infimum is achieved at some
a <∞. Let Γ∞(s) := {a ∈ A : a be an accumulation point
of some sequence {ak} where each ak ∈ Γk(s)}. Let Γ∗(s)
be the set of minimizers in (20). In Appendix G, we show
that Γk(s) for each k ≥ 1, Γ∞(s) and Γ∗(s) are nonempty.

Theorem 7: The value iteration given by (21) has the
following properties:

(i) J (k)
ξ (s) → Jξ(s) for all s ∈ (0, 1], i.e., the value

iteration converges to the optimal value function.
(ii) Γ∞(s) ⊂ Γ∗(s).

(iii) There is a stationary optimal policy f∞ =
{f, f, f, · · · } where f : (0, 1] → A and f(s) ∈ Γ∞(s)
for all s ∈ (0, 1].
Proof: The proof is given in Appendix G. It uses

some results from [29], which have been discussed first.
Next, we provide a general theorem (Theorem 11) on the
convergence of value iteration, which has been used to
prove Theorem 7.

Remark: Since the action space is noncompact, it is
not obvious from standard results whether the optimal
policy exists. However, we are able to show that in our
problem, for each state s ∈ (0, 1], the optimal action will
lie in a compact set of the from [0, a(s)], where a(s) is
continuous in s, and a(s) could possibly go to ∞ as
s → 0. The results of [29] allow us to work with the
scenario where for each state s, it is sufficient to focus
only on a compact action space [0, a(s)].
4.5 Properties of the Value Function Jξ(s)

Proposition 3: Jξ(s) is increasing and concave over s ∈
(0, 1].

Proposition 4: Jξ(s) is increasing and concave in ξ for
all s ∈ (0, 1].

Proposition 5: Jξ(s) is continuous in s over (0, 1] and
continuous in ξ over (0,∞).
See Appendix H for the proofs of these propositions.

4.6 A Useful Normalization
Note that, βL is exponentially distributed with mean 1.
Defining Λ := ρ

β and z̃k := βyk, k = 1, 2, · · · , (N + 1), we
can rewrite (9) as follows:

inf
π∈Π

Eπ

(
eΛz̃1 +

N+1∑
k=2

eΛz̃k − eΛz̃k−1

1 + eΛz̃1 + · · ·+ eΛz̃k−1
+ ξN

)
(22)

Note that, Λ plays the same role as λ played in the
known L case (see Section 3.2). Since 1

β is the mean
length of the line, Λ can be considered as a measure
of attenuation in the network. We can think of the new
problem (22) in the same way as (9), but with the length
of the line being exponentially distributed with mean 1
(β′ = 1) and the path-loss exponent being changed to
ρ′ = Λ = ρ

β . The relay locations are also normalized
(z̃k = βyk). One can solve the new problem (22) and
obtain the optimal policy. Then the solution to (9) can
be obtained by multiplying each control distance (from
the optimal policy of (22)) with the constant 1

β . Hence,
it suffices to work with β = 1.
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Figure 5: β = 1, Λ := ρ
β

= 2; a∗ vs. s.
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= 2; a∗ vs. ξ.
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Figure 7: β = 1, ξ = 0.01; a∗ vs. Λ.

5 A NUMERICAL STUDY OF AS-YOU-GO DE-
PLOYMENT

Let us recall that the state of the system after placing the
k-th relay is given by sk = eΛz̃k∑k

i=0 e
Λz̃i

. The action is the
normalized distance of the next relay to be placed from
the current location. The single stage cost function for
our total cost minimization problem is given by (14).

In our numerical work, we discretized the state space
(0, 1] into 100 steps as {0.01, 0.02, · · · , 0.99, 1}, and dis-
cretized the action space into steps of size 0.001, i.e., the
action space becomes {0, 0.001, 0.002, · · · }.

5.1 Structure of the Optimal Policy
We performed numerical experiments to study the struc-
ture of the optimal policy obtained through value it-
eration for β = 1 and some values of Λ := ρ

β . The
value iteration in these experiments converged and we
obtained a stationary optimal policy, though Theorem 7
does not guarantee the uniqueness of the stationary
optimal policy.

Figure 5 shows that the normalized optimal placement
distance a∗ is decreasing with the state s ∈ (0, 1]. This
can be understood as follows. The state s (at a placement
point) is small only if a sufficiently large number of
relays have already been placed.6 Hence, if several relays
have already been placed and

∑k
i=0 e

Λz̃i is sufficiently
large compared to eΛz̃k (i.e., sk is small), the (k + 1)-st
relay will be able to receive sufficient amount of power

6. eΛz̃k∑k
i=0 e

Λz̃i
≥ eΛz̃k

(k+1)eΛz̃k
= 1

k+1
; hence, if sk is small, k must be

large enough.

Table 1: Sequential placement on a line of length 10 for various
Λ, using the corresponding optimal policies for ξ = 0.001.

Λ Normalised Optimal distances of the nodes No. of
from the source relays

0.01 0, 0, 8.4180, 10.0000 3
0.1 0, 0, 0, 0, 0, 0, 0, 0.2950, 0.5950, 0.9810, 1.3670, 33

1.7530, 2.1390, · · · , 9.0870, 9.4730, 9.8590, 10.0000
5 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0020, 0.0080, 0.0140, 1677

0.0200, · · · , 9.9860, 9.9920, 9.9980, 10.0000

Table 2: Evolution of state in the process of sequential place-
ment on a line of length 10 for various values of Λ, using the
corresponding optimal policies for ξ = 0.001.

Λ Evolution of state in the process of sequential placement
0.01 1, 0.5, 0.34, 0.27
0.1 1, 0.5, 0.34, 0.26, 0.21, 0.18, 0.16, 0.14, 0.13, 0.12, 0.12, · · ·
5 1, 0.5, 0.34, 0.26, 0.21, 0.18, 0.16, 0.14, 0.13, 0.12,

0.11, 0.1, 0.1, 0.1, · · ·

Table 3: Sequential placement on a line of length 10 for various
Λ, using the corresponding optimal policies for ξ = 0.1.

Λ Normalised Optimal distances of the nodes No. of
from the source relays

0.01 10 0
0.1 5.3060, 10.0000 1
5 0, 0.0050, 0.0510, 0.1220, 0.1930, 143

0.2640,· · · , 9.9910, 10.0000
8 0, 0.003, 0.019, 0.06, 0.101, · · · , 9.982, 10 246
20 0, 0.001, 0.003, 0.016, 0.031, 0.046, · · · , 9.991, 10 669

Table 4: Evolution of state in the process of sequential place-
ment on a line of length 10 for various values of Λ, using the
corresponding optimal policies for ξ = 0.1.

Λ Evolution of state in the process of sequential placement
0.01 1
0.1 1, 0.63
5 1, 0.5, 0.34, 0.3, 0.3, · · ·
8 1, 0.5, 0.34, 0.28, 0.28, · · ·
20 1, 0.5, 0.34, 0.27, 0.26, 0.26, · · ·

from the previous nodes, and hence does not need to be
placed close to the k-th relay. A value of sk close to 1
indicates that there is a large gap between relay k and
relay k−1, the power received at the next relay from the
previous relays is small and hence the next relay must
be placed closer to the previous one.

On the other hand, a∗ is increasing with ξ (see Fig-
ure 6). Recall that ξ is the price of placing a relay. This
figure confirms the intuition that if the relay price is high,
then the relays should be placed less frequently.

Figure 7 shows that a∗ is decreasing with Λ, for
fixed values of ξ and s. This happens because increased
attenuation will require frequent placement of the relays.

5.2 Relay Placement Patterns

The policy that we use corresponds to a line having
exponentially distributed length with mean 1, but it is
applied to the scenario where the actual realization of
the (normalised) length (see Section 4.6) of the line is 10.

Tables 1, 3, and 5 illustrate some examples of as-you-
go placement of relay nodes along a line of normalised
length 10, using various values of Λ and ξ. Tables 2,
4, and 6 illustrate the corresponding evolution of state
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Table 5: Sequential placement on a line of length 10 for of ξ,
using the corresponding optimal policies for Λ = 20.

ξ Normalised Optimal distances of the nodes No. of
from the source relays

0.2 0 , 0.008, 0.03, 0.052, · · · , 9.996, 10 456
1 0.022, 0.069, 0.116, · · · , 9.986, 10 213
2 0.042, 0.103, 0.163, 0.223, · · · , 9.943, 10 166
10 0.099, 0.205, 0.311, · · · , 9.957, 10 94

Table 6: Evolution of state in the process of sequential place-
ment on a line of length 10 for various values of ξ, using the
corresponding optimal policies for Λ = 20.

ξ Evolution of state in the process of sequential placement
0.2 1, 0.5, 0.37, 0.37, · · ·
1 1, 0.61, 0.61, · · ·
2 1, 0.7, 0.71, 0.71, · · ·
10 1, 0.88, 0.88, · · ·

as the relays are placed in the examples in Tables 1,
3 and 5. If the line actually ends at some point before
(normalised) distance 10, the process would end there
with the corresponding placement of relays (as can be
obtained from Tables 1, 3, and 5) before the sink being
placed at the end-point. Thus, for example, reading from
Table 3 for ξ = 0.1 and Λ = 5, if the actual normalised
length of the line is 0.99, then one relay will be placed at
0 (the source itself), followed by 15 relays at normalised
distances 0.005, 0.051, 0.122, 0.193, 0.264, · · · , 0.974 from
the source, and finally the sink is placed at a normalised
distance 0.99, the end of the line.

We observe that as Λ increases, more relays need to
be placed since the optimal control decreases with Λ for
each s (see Figure 7). On the other hand, the number of
relays decreases with increasing ξ (the relay cost); this is
in confirmation of the observations from Figure 6.

Note that, initially one or more relays are placed at
or near the source if a∗(s = 1) is 0 or small. But, after
some relays have been placed, the relays are placed
equally spaced apart. We see that this happens because,
after a few relays have been placed, the state, s, does
not change, hence, resulting in the relays being subse-
quently placed equally spaced apart. This phenomenon
is evident in Table 2, Table 4, Table 6, and Figure 8.
The state s will remain unchanged after a relay place-
ment if s = d seΛa

∗(s)

0.01(1+seΛa∗(s))
e × 0.01, since we have

discretized the state space. After some relays are placed,
the state becomes equal to a fixed point s′ of the function
d seΛa

∗(s)

0.01(1+seΛa∗(s))
e × 0.01. Note that the deployment starts

from s0 := 1, but for any value of s0 (even with
s0 smaller than s′), we numerically observe the same
phenomenon. Hence, s′ is an absorbing state.

5.3 Numerical Examples for Practical Deployment
In order to provide a more concrete illustration we adopt
a path loss parameter from [24]. Figure 4 of [24] shows
that the attenuation in the received signal power in a
dense urban environment is roughly 50 dB when we
move from 50 m distance to 300 m distance away from
the transmitter. This yields a value of ρ to be 0.04 per
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Figure 8: Evolution of the state sk with k: initial state s0 = 1.

Table 7: Comparison of the performance (in terms of H ; see
text) of optimal sequential placement over a line of random
length, with the optimal placement if the length was known.
Results from 10000 samples of exponentially distributed line
lengths.

Average Mean Number of Maximum
ξ Λ percentage number of cases where percentage

difference relays used no relay difference
was used

0.001 0.01 0.0068 2.0002 0 0.7698
0.001 0.1 0.3996 9.4849 0 6.8947
0.01 0.01 0 0 10000 0
0.01 0.1 0.3517 2.2723 0 4.6618
0.01 0.5 1.5661 7.7572 0 4.7789
0.1 0.01 0 0 10000 0
0.1 0.1 0.1259 0.0056 9944 25.9098
0.1 0.5 2.9869 1.8252 0 12.5907
0.1 2 4.7023 7.1530 0 9.0211
0.1 20 3.5472 27.9217 0 6.6223
0.1 8 4.0097 21.0671 0 7.8264
1 8 8.0286 7.8886 495 27.7362
1 20 5.2158 11.2342 402 26.0026
5 20 10.3341 7.1950 597 61.7460

meter for the exponential path-loss (see the discussion in
Section 6.1 on the motivation for choosing the exponen-
tial path-loss model in the light of the results from [24]).
Then, 1

β = 200 m corresponds to Λ = 8, and 1
β = 500 m

corresponds to Λ = 20. For Λ = 20, normalised relay
locations and state evolution {sk}k≥1 are available in
Tables 3-6, and, for Λ = 8, normalised relay locations
and state evolution {sk}k≥1 are available in Tables 3-
4. Note that, under ρ = 0.04 per meter and Λ = 20,
one unit normalised distance in the tables correspond to
500 m distance in the dense urban environment (due to
the normalization as in Section 4.6).

For the sake of illustration, let us consider the sample
deployment for ξ = 10, Λ = 20 (Table 5). In this case,
the first relay will be placed at a distance 0.099× 500 =
49.5 m from the source, the second relay will be placed
at a distance 0.205× 500 = 102.5 m from the source, etc.
Also, if we choose ξ such that few relays will be placed
on a typical line whose length is several hundreds of
meters, then the relays will be placed almost uniformly
on the line. But, for small ξ, more relays will be placed
and some of them will be clustered near the source (see
the deployment for Λ = 8 and ξ = 0.1 in Table 3).

5.4 Comparison with Optimal Offline Deployment
Since there is no prior work in the literature with which
we can make a fair comparison of our as-you-go de-
ployment policy for the full-duplex wireless multi-relay
network, we compare the performance of our policy
with optimal offline deployment. Thus, the numerical
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experiments reported in Table 7 are a result of asking
the following question: how does the cost of as-you-
go deployment over a line of exponentially distributed
length compare with the cost of placing the same number
of relays optimally over the line, once the length of the
line has been revealed?

For several combinations of Λ and ξ, we generated
10000 random numbers independently from an expo-
nential distribution with parameter β = 1. Each of
these numbers was considered as a possible realiza-
tion of the length of the line. Then we computed the
placement of the relay nodes for each realization by
optimal sequential placement policy, which gave us
H = 1

g0,1
+
∑N+1
k=2

(g0,k−1−g0,k)

g0,kg0,k−1

∑k−1
l=0

1
g0,l

, a quantity that we

use to evaluate the quality of the relay placement. The
significance of H can be recalled from (6) where we
found that the rate C(1 + PT /σ

2

H ) can be achieved if total
power PT is available to distribute among the source and
the relays; i.e., H can be interpreted as the net effective
attenuation after power has been allocated optimally
over the nodes. Also, for each realization, we computed
H for optimal relay placement, assuming that the length
of the line is known before deployment and that the
number of relays available is the same as the number of
relays used by the corresponding sequential placement
policy. For a given combination of Λ and ξ, for the k-th
realization of the length of the line, let us denote the two
H values by H

(k)
sequential and H

(k)
optimal. Then the percentage

difference for the k-th realization is:

ek :=
|H(k)

optimal −H
(k)
sequential|

H
(k)
optimal

× 100 (23)

The average percentage difference in Table 7 is the
quantity

∑10000
k=1 ek
10000 . The maximum percentage difference

is the quantity maxk∈{1,2,··· ,10000} ek.
Discussion of Table 7:

(i) For small enough ξ, some relays will be placed at
the source itself. For example, for Λ = 0.01 and
ξ = 0.001, we will place two relays at the source
(Table 1). After placing the first relay, the next state
will become s = 0.5, and a∗(s = 0.5) = 0. The state
after placing the second relay becomes s = 0.34,
for which a∗(s = 0.34) = 8.41 (see the placement
in Table 1). Now, the line having an exponentially
distributed length with mean 1 will end before
a∗(s = 0.34) = 8.41 distance with high probability,
and the probability of placing the third relay will be
very small. As a result, the mean number of relays
will be 2.0002. In case only 2 relays are placed by
the sequential deployment policy and we seek to
place 2 relays optimally for the same length of the
line (with the length known), the optimal locations
for both relays are close to the source location if the
length of the line is small (i.e., if the attenuation λ
is small, recall the definition of λ from Section 3.2).
If the line is long (which has a very small proba-

bility), the optimal placement will be significantly
different from the sequential placement. Altogether,
the difference (from (23)) will be small.

(ii) For Λ = 0.01 and ξ = 0.1, a∗(1) is so large that with
high probability the line will end in a distance less
than a∗(1) and no relay will be placed.

(iii) From (6) we know that for a given placement of
relays on a line of given length L, the optimal power
allocation yields an achievable rate log2(1 + PT /σ

2

H ).
At the end of as-you-go deployment the power is
allocated optimally among the nodes deployed, and
a rate log2(1 + PT /σ

2

Hsequential
) can be achieved. If the

same number of relays are optimally placed over
the same line, with the same total power, then the
inner bound is given by log2(1 + PT /σ

2

Hoptimal
). We seek

to compare these two rates numerically.
The maximum fractional difference in Table 7 is less
than 2

3 , and substantially smaller than 2
3 in most

cases. Since, in (23), H(k)
sequential is always greater

than H
(k)
optimal, we have H

(k)
sequential ≤

5
3H

(k)
optimal for

all k ≥ 1 (i.e., for all realizations of L in the
simulation). Now, by the monotonicity of log2(·):

1

2
log2

(
1 +

PT /σ
2

H
(k)
optimal

)
−

1

2
log2

(
1 +

PT /σ
2

H
(k)
sequential

)

≤
1

2
log2

(
1 +

PT /σ
2

H
(k)
optimal

)
−

1

2
log2

(
1 +

PT /σ
2

5
3
H

(k)
optimal

)

Since log2(·) is a concave function, for any x > y >
0, we have log2(1 + x) − log2(1 + y) ≤ log2(x) −
log2(y). Using this inequality, we can upper bound
the difference in achievable rate from the previous
equation by:

1

2
log2

(
PT /σ

2

H
(k)
optimal

)
−

1

2
log2

(
PT /σ

2

5
3
H

(k)
optimal

)
= 0.3685

This calculation implies that, for the large number of
cases reported in Table 7, by using the approxima-
tion in (10) and by using the corresponding optimal
policy for as-you-go deployment, we lose at most
0.3685 bits per channel use, compared to the case
when the realization of the exponentially distributed
source to sink distance is known apriori and when
we use the same number of relays as used in the as-
you-go deployment case. Note that, the statement
of this claim holds with high probability since the
maximum difference is taken over 10000 sample
deployments. Hence, it is reasonable to solve (10)
instead of (11) which is intractable.

6 DISCUSSION
6.1 Exponential Path-Loss Model

Exponential path-loss model has been used before in the
context of relay placement (see [16], [22]) and in the con-
text of cellular networks (see [26, Section 2.3]). Analytical
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and experimental support for the exponential path-loss
model have been provided by Franceschetti et al. ([24]).
Franceschetti et al. used a random scattering model
(applicable to an urban environment, or a forest environ-
ment) to show that the path-loss in such an environment
is the product of an exponential function and a power
function of the distance (see [24, Equation (14)]). Figure 4
of their paper, which is obtained from measurements
made in an urban environment, shows that path-loss (in
dB) varies linearly with distance beyond a distance of
40 − 50 meters, which implies exponential path-loss for
longer distance. These distances are practical for urban
scenarios where the network is deployed over several
hundreds of meters or several kilometers.

Exponential path-loss was also proposed by Marano
and Franceschetti for urban environment, and validated
by theory and experiment (see [30, Figure 10]).7

6.2 Incorporating Shadowing and Fading
Shadowing (which is typically viewed as being static
once a link is deployed) and time varying fading, can
be incorporated in our setting by providing a fade-
margin in the power at each transmitter. Thus, when
expressed in dBm, the actual transmit power for any
transmitter-receiver pair is the fade-margin plus the
power used in the information theoretic capacity formu-
las; this fade-margin does not depend on the distance
between the transmitter-receiver pair. Note that, this ap-
proach, though very conservative in nature, can remove
the complexity in analysis arising out of fading in the
network. Also note that, if the actual power gain between
two nodes r distance apart is c0e−ρr with c0 > 0, then
c0 can be absorbed in the fade margin.

6.3 Full-Duplex Decode-and-Forward Relaying
Full-duplex radios might become a reality soon; see [11],
[12], [13], [14] for recent efforts to realize them. Decode-
and-forward relaying requires symbol-level synchronous
operation across all nodes in the network. The require-
ment of globally coherent transmission and reception
seems to be restrictive at the moment, but this problem
will be solved with the advent of better clocks (with
less drift) and efficient clock synchronization algorithms.
Any research on impromptu deployment assuming im-
perfect synchronization, or half-duplex communication,
or no interference cancellation, can use this paper as a
benchmark for performance analysis.

6.4 Insights on Power-Law Path-Loss
In [1], we studied the problem of single-relay placement
under a per-node power constraint at the source and
the relay, for both exponential and power-law path-
loss models. The variation of optimal relay location,

7. Marano and Franceschetti ([30]) modeled a city as a random
lattice, and the distance from the transmitter to the receiver is measured
along the edges of the lattice instead of the Euclidean distance. Hence,
this result renders the analysis in our paper valid even for deployment
along the streets of a city with turns; deployment algorithm in that case
will only consider the distances along the streets and not on the actual
Euclidean distances.

as the amount of attenuation in the network varies,
follow slightly different (but mostly similar) trends (see
Figures 2 and 3 of [1]) because of the fact that power-
law model allows unbounded power gain (unlike the
exponential model) when the distance r tends to 0
(limr→0 r

−η = ∞). The findings are even more similar
when we bound the power gain from above by some
constant value in case of the power-law model (power
gain is min{r−η, b−η} for some b > 0); see the similarity
between Figures 2 and 4 in [1]. The results on the
fixed node power case provide the insight that when
the power gain is r−η or min{r−η, b−η}; under the sum
power constraint, the variation of the relay locations as
a function of attenuation will follow a pattern similar to
that in case of exponential path-loss.

7 CONCLUSION
Motivated by the problem of as-you-go deployment of
wireless relay networks, we first studied the problem of
placing relay nodes along a line, in order to connect a
sink at the end of the line to a source at the start of
the line, so as to maximize the end-to-end achievable
data rate. For the multi-relay channel with exponential
path-loss and sum power constraint, we derived an
expression for the achievable rate in terms of the power
gains among all possible node pairs, and formulated
an optimization problem in order to maximize the end-
to-end data rate. Numerical work for the fixed source-
sink distance suggests that at low attenuation the relays
are mostly clustered close to the source in order to be
able to cooperate among themselves, whereas at high
attenuation they are uniformly placed and work as
repeaters. Next, the deploy-as-you-go sequential place-
ment problem was addressed; a sequential relay place-
ment problem along a line having unknown random
length was formulated as an MDP, the value function
was characterized analytically, and the policy structure
was investigated numerically. We found numerically that
at the initial stage of the deployment process the inter-
relay distances are smaller, and, as deployment pro-
gresses, the inter-relay distances increase gradually, and
finally the relays start being placed at regular intervals.

Our results are based on information theoretic achiev-
able rate results. In order to utilize currently commer-
cially available wireless devices, we have also been
exploring non-information theoretic, packet forwarding
models for optimal relay placement, with the aim of ob-
taining placement algorithms that can be easily reduced
to practice (see [7] for reference). The study of as-you-
go deployment under the information theoretic model
and under the packet forwarding model provides two
complementary approaches for two different conditions
in the physical layer and the MAC layer, and provides
a more comprehensive development of the problem.
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APPENDIX A
A BRIEF DESCRIPTION OF THE CODING
SCHEME OF [10]

Transmissions take place via block codes of T symbols
each. The transmission blocks at the source and the
N relays are synchronized. The coding and decoding
scheme is such that a message generated at the source at
the beginning of block b, b ≥ 1, is decoded by the sink at
the end of block b+N , i.e., N + 1 block durations after
the message was generated (with probability tending to
1, as T →∞). Thus, at the end of B blocks, B ≥ N + 1,
the sink is able to decode B − N messages. It follows,
by taking B → ∞, that, if the code rate is R bits per
symbol, then an information rate of R bits per symbol
can be achieved from the source to the sink.

As mentioned earlier, we index the source by 0, the
relays by k, 1 ≤ k ≤ N , and the sink by N + 1. There are
(N+1)2 independent Gaussian random codebooks, each
containing 2TR codes, each code being of length T ; these
codebooks are available to all nodes. At the beginning
of block b, the source generates a new message wb, and,
at this stage, we assume that each node k, 1 ≤ k ≤ N+1,
has a reliable estimate of all the messages wb−j , j ≥ k.
In block b, the source uses a new codebook to encode
wb. In addition, relay k, 1 ≤ k ≤ N, and all of its
previous transmitters (indexed 0 ≤ j ≤ k − 1), use
another codebook to encode wb−k (or their estimate of
it). Thus, if the relays 1, 2, · · · , k have a perfect estimate
of wb−k at the beginning of block b, they will trans-
mit the same codeword for wb−k. Therefore, in block
b, the source and relays 1, 2, · · · , k coherently transmit
the codeword for wb−k. In this manner, in block b,
transmitter k, 0 ≤ k ≤ N, generates N + 1 − k code-
words, corresponding to wb−k, wb−k−1, · · · , wb−N , which
are transmitted with powers Pk,k+1, Pk,k+2, · · · , Pk,N+1.
In block b, node k, 1 ≤ k ≤ N+1, receives a superposition
of transmissions from all other nodes. Assuming that
node k knows all the powers, and all the channel gains,
and recalling that it has a reliable estimate of all the
messages wb−j , j ≥ k, it can subtract the interference
from transmitters k+1, k+2, · · · , N . At the end of block
b, after subtracting the signals it knows, node k is left
with the k received signals from nodes 0, 1, · · · , (k − 1)
(received in blocks b, b−1, · · · , b−k+ 1), which all carry
an encoding of the message wb−k+1. These k signals are
then jointly used to decode wb−k+1, using joint typicality
decoding. The codebooks are cycled through in a manner
so that in any block all nodes encoding a message (or
their estimate of it) use the same codebook, but different

(thus, independent) codebooks are used for different
messages. Under this encoding and decoding scheme,
any rate strictly less than R displayed in (2) is achievable.

APPENDIX B
PROOF OF THEOREM 1
We want to maximize R given in (2) subject to the
total power constraint, assuming fixed relay locations.
Let us consider C( 1

σ2

∑k
j=1(

∑j−1
i=0 hi,k

√
Pi,j)

2), i.e., the
k-th term in the argument of min{· · · } in (2). By
the monotonicity of C(·), it is sufficient to consider∑k
j=1(

∑j−1
i=0 hi,k

√
Pi,j)

2. Now since the channel gains are
multiplicative, we have:

k∑
j=1

(

j−1∑
i=0

hi,k
√
Pi,j)

2 = g0,k

k∑
j=1

( j−1∑
i=0

√
Pi,j

h0,i

)2

Thus our optimization problem becomes:

max min
k∈{1,2,··· ,N+1}

g0,k

k∑
j=1

( j−1∑
i=0

√
Pi,j

h0,i

)2

s.t
N+1∑
j=1

γj ≤ PT and
j−1∑
i=0

Pi,j = γj ∀ 1 ≤ j ≤ (N + 1) (24)

Let us fix γ1, γ2, · · · , γN+1 such that their sum is equal
to PT . We observe that Pi,N+1 for i ∈ {0, 1, · · · , N}
appear in the objective function only once: for k = N+1

through the term (
∑N
i=0

√
Pi,N+1

h0,i
)2. Since we have fixed

γN+1, we need to maximize this term over Pi,N+1, i ∈
{0, 1, · · · , N}. So we have the following optimization
problem:

max
N∑
i=0

√
Pi,N+1

h0,i
s.t

N∑
i=0

Pi,N+1 = γN+1 (25)

By Cauchy-Schwartz inequality, the objective function
in this optimization problem is upper bounded by (using
the fact that g0,i = h2

0,i ∀i ∈ {0, 1, · · · , N}):√√√√(
N∑
i=0

Pi,N+1)(
N∑
i=0

1

g0,i
) =

√√√√γN+1

N∑
i=0

1

g0,i

The upper bound is achieved if there exists some c > 0

such that
√
Pi,N+1

1
h0,i

= c ∀i ∈ {0, 1, · · · , N}. So we have:

Pi,N+1 =
c2

g0,i
∀i ∈ {0, 1, · · · , N}

Since
∑N
i=0 Pi,N+1 = γN+1, we obtain c2 = γN+1∑N

l=0
1
g0,l

.

Thus, Pi,N+1 =
1
g0,i∑N
l=0

1
g0,l

γN+1.
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Here we have used the fact that h0,0 = 1. Now
{Pi,N : i = 0, 1, · · · , (N − 1)} appear only through the

sum
∑N−1
i=0

√
Pi,N
h0,i

, and it appears twice: for k = N and
k = N + 1. We need to maximize this sum subject to
the constraint

∑N−1
i=0 Pi,N = γN . This optimization can

be solved in a similar way as before. Thus by repeatedly
using this argument and solving optimization problems
similar in nature to (25), we obtain:

Pi,j =

1
g0,i∑j−1
l=0

1
g0,l

γj ∀0 ≤ i < j ≤ (N + 1) (26)

Substituting for Pi,j , 0 ≤ i < j ≤ (N + 1) in (24), we
obtain the following optimization problem:

max min
k∈{1,2,··· ,N+1}

g0,k

k∑
j=1

(
γj

j−1∑
i=0

1

g0,i

)

s.t.
N+1∑
j=1

γj ≤ PT (27)

Let us define bk := g0,k and aj :=
∑j−1
i=0

1
g0,i

. Observe
that bk is decreasing and ak is increasing with k. Let us
define:

s̃k(γ1, γ2, · · · , γN+1) := bk

k∑
j=1

ajγj (28)

With this notation, our optimization problem becomes:

max min
1≤k≤N+1

s̃k(γ1, γ2, · · · , γN+1) s.t.
N+1∑
j=1

γj ≤ PT (29)

Claim 1: Under optimal allocation of γ1, γ2, · · · , γN+1

for the optimization problem (29), s̃1 = s̃2 = · · · = s̃N+1.
�

Proof: (29) can be rewritten as:

max ζ

s.t ζ ≤ bk
k∑
j=1

ajγj ∀ k ∈ {1, 2, · · · , N + 1},

N+1∑
j=1

γj ≤ PT , γj ≥ 0 ∀ 1 ≤ j ≤ N + 1 (30)

The dual of this linear program is given by:

minPT θ

s.t
N+1∑
k=1

µk = 1, θ ≥ 0,

al

N+1∑
k=l

bkµk + νl = θ ∀ l ∈ {1, 2, · · · , N + 1},

µl ≥ 0, νl ≥ 0 ∀ l ∈ {1, 2, · · · , N + 1} (31)

Now, let us consider a primal feasible solution
({γ∗j }1≤j≤N+1, ζ

∗) which satisfies:

bk

k∑
j=1

ajγ
∗
j = ζ∗ ∀ k ∈ {1, 2, · · · , N + 1},

N+1∑
j=1

γ∗j = PT (32)

Thus we have, b1a1γ
∗
1 = ζ∗, i.e., γ∗1 = ζ∗

b1a1
. Again,

b2(a1γ
∗
1 + a2γ

∗
2 ) = ζ∗, which implies b2

b1
ζ∗ + b2a2γ

∗
2 = ζ∗.

Thus we obtain γ∗2 = ζ∗

a2
( 1
b2
− 1

b1
). In general, we can

write:

γ∗k =
ζ∗

ak

(
1

bk
−

1

bk−1

)
∀k ∈ {1, 2, · · · , N + 1}

with 1
b0

:= 0. Now, since
∑N+1
k=1 γ∗k = PT , we obtain:

ζ∗ =
PT∑N+1

k=1
1
ak

( 1
bk
− 1
bk−1

)

γ∗j =

1
aj

(
1
bj
− 1
bj−1

)
∑N+1
k=1

1
ak

( 1
bk
− 1
bk−1

)
PT , j ∈ {1, 2, · · · , N + 1} (33)

It should be noted that since bk is nonincreasing in k, the
primal variables above are nonnegative and satisfies fea-
sibility conditions. Again, let us consider a dual feasible
solution ({µ∗j , ν∗j }1≤j≤N+1, θ

∗) which satisfies:

N+1∑
k=1

µ∗k = 1, ν∗l = 0 ∀ l ∈ {1, 2, · · · , N + 1}

al

N+1∑
k=l

bkµ
∗
k + ν∗l = θ∗ ∀ l ∈ {1, 2, · · · , N + 1} (34)

Solving these equations, we obtain:

θ∗ =
1∑N+1

k=1
1
bk

(
1
ak
− 1
ak+1

)
µ∗j =

1
bj

( 1
aj
− 1
aj+1

)∑N+1
k=1

1
bk

(
1
ak
− 1
ak+1

) , j ∈ {1, 2, · · · , N + 1} (35)

where 1
aN+2

:= 0. Since ak is increasing in k, all
dual variables are feasible. It is easy to check that
ζ∗ = PT θ

∗, which means that there is no duality
gap. Since the primal is a linear program, the solution
(γ∗1 , γ

∗
2 , · · · , γ∗N+1, ζ

∗) is primal optimal. Thus we have
established the claim, since the primal optimal solution
satisfies it.

So let us obtain γ1, γ2, · · · , γN+1 for which s̃1 =
s̃2 = · · · = s̃N+1. Putting s̃k = s̃k−1, we obtain
bk
∑k
j=1 ajγj = bk−1

∑k−1
j=1 ajγj . Thus, we obtain, γk =

(bk−1−bk)
bk

1
ak

∑k−1
j=1 ajγj

Let dk := (bk−1−bk)
bk

1
ak

. Hence, γk = dk
∑k−1
j=1 ajγj .

From this recursive equation, we have γ2 = d2a1γ1,
γ3 = d3(a1γ1 + a2γ2) = d3a1(1 + a2d2)γ1, and, in general
for k ≥ 3,

γk = dka1Πk−1
j=2 (1 + ajdj)γ1 (36)

Using the fact that γ1+γ2+· · ·+γN+1 = PT , we obtain:

γ1 =
PT

1 + d2a1 +
∑N+1
k=3 dka1Πk−1

j=2 (1 + ajdj)
(37)

Thus if s̃1 = s̃2 = · · · = s̃N+1, there is a unique
allocation γ1, γ2, · · · , γN+1. So this must be the one maxi-
mizing R. Hence, optimum γ1 is obtained by (37). Then,
substituting the values of {ak : k = 0, 1, · · · , N} and
dk : k = 1, 2, · · · , N + 1 in (36) and (37), we obtain the
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values of γ1, γ2, · · · , γN+1 as shown in Theorem 1.
Now under these optimal values of γ1, γ2, · · · , γN+1,

all terms in the argument of min{· · · } in (2) are equal.
So we can consider the first term alone. Thus we ob-
tain the expression for R optimized over power allo-
cation among all the nodes for fixed relay locations
as : RoptPT

(y1, y2, · · · , yN ) = C
(
g0,1P0,1

σ2

)
= C

( g0,1γ1

σ2

)
.

Substituting the expression for γ1 from (5), we obtain
the achievable rate formula (6). �

APPENDIX C
PROOF OF THEOREM 2
Here we want to place the relay node at a distance r1

from the source to minimize
{

1
g0,1

+
g0,1−g0,2

g0,2(1+g0,1)

}
(see

Equation (6)). Hence, our optimization problem becomes
:

min
r1∈[0,L]

{
eρr1 +

e−ρr1 − e−ρL

e−ρL(1 + e−ρr1)

}
Writing z1 = eρr1 , the problem becomes :

min
z1∈[1,eρL]

{
z1 − 1 +

eρL + 1

z1 + 1

}
This is a convex optimization problem. Equating the
derivative of the objective function to zero, we obtain
1 − eρL+1

(z1+1)2 = 0. Thus the derivative becomes zero at
z′1 =

√
1 + eρL − 1 > 0. Hence, the objective func-

tion is decreasing in z1 for z1 ≤ z′1 and increasing in
z1 ≥ z′1. So the minimizer is z∗1 = max{z′1, 1}. So the
optimum distance of the relay node from the source is
y∗1 = r∗1 = max{0, r′1}, where r′1 = 1

ρ log(
√

1 + eρL − 1).

Hence, y∗1
L = max{ 1

λ log
(√

eλ + 1− 1
)
, 0}. Now r′1 ≥ 0

if and only if λ ≥ log 3. Hence, y∗1
L = 0 for λ ≤ log 3 and

y∗1
L = 1

λ log
(√

eλ + 1− 1
)

for λ ≥ log 3.
For λ ≤ log 3, the relay is placed at the source. Then

g0,1 = 1 and g0,2 = g1,2 = e−λ. Then P0,1 = γ1 = 2PT
eλ+1

(by

Theorem 1) and R∗ = C
(

2PT
(eλ+1)σ2

)
. Also γ2 = eλ−1

eλ+1
PT .

Hence, P0,2 = P1,2 = eλ−1
eλ+1

PT
2 .

for λ ≥ log 3, the relay is placed at r′1. Substituting the
value of r′1 into Equation (4), we obtain P0,1 = γ1 = PT

2 ,

P0,2 = 1√
eλ+1

PT
2 , P1,2 =

√
eλ+1−1√
eλ+1

PT
2 . So in this case

R∗ = C
(
g0,1P0,1

σ2

)
. Since P0,1 = PT

2 , we have R∗ =

C

(
1√

eλ+1−1

PT
2σ2

)
. �

APPENDIX D
PROOF OF THEOREM 3
For the N -relay problem, let the minimizer in (8) be
z∗1 , z

∗
2 , · · · , z∗N and let y∗k = 1

ρ log z∗k . Clearly, there exists
i ∈ {0, 1, · · · , N} such that y∗i+1 > y∗i . Let us insert a
new relay at a distance y from the source such that

y∗i < y < y∗i+1. Now we find that we can easily reach (38)
(see next page) just by simple comparison. For example,

eρy − z∗i
1 + z∗1 + · · ·+ z∗i

+
z∗i+1 − eρy

1 + z∗1 + · · ·+ z∗i + eρy

<
eρy − z∗i

1 + z∗1 + · · ·+ z∗i
+

z∗i+1 − eρy

1 + z∗1 + · · ·+ z∗i

=
z∗i+1 − z∗i

1 + z∗1 + · · ·+ z∗i

First i terms in the summations of L.H.S (left hand side)
and R.H.S (right hand side) of (38) are identical. Also
sum of the remaining terms in L.H.S is smaller than
that of the R.H.S since there is an additional eρy in the
denominator of each fraction for the L.H.S. Hence, we
can justify (38). Now R.H.S is precisely the optimum
objective function for the N -relay placement problem
(see (8)). On the other hand, L.H.S is a particular value of
the objective in (8), for (N+1)-relay placement problem.
This clearly implies that by adding one additional relay
we can strictly improve from R∗ of the N relay channel.
Hence, R∗(N + 1) > R∗(N). �

APPENDIX E
PROOF OF THEOREM 4

Consider the optimization problem as shown in (8).
Let us consider λ1, λ2, with λ1 < λ2, the respective
minimizers being (z∗1 , · · · , z∗N ) and (z′1, · · · , z′N ). Clearly,

G(N,λ1) =
eλ1

z∗1 +
∑N+1
k=2

z∗k−z
∗
k−1∑k−1

l=0 z
∗
l

(39)

with z∗N+1 = eλ1 and z∗0 = 1. With N ≥ 1,
note that z∗1 −

z∗N
1+z∗1+···+z∗N

≥ 0, since z∗1 ≥ 1

and z∗N
1+z∗1+···+z∗N

≤ 1. Hence, it is easy to see that
eλ

z∗1−
z∗
N

1+z∗1+···+z∗
N

+
∑N
k=2

z∗
k
−z∗
k−1∑k−1

l=0
z∗
l

+ eλ

1+z∗1+···+z∗
N

is increasing in

λ where (z∗1 , · · · , z∗N ) is the optimal solution of (8) with
λ = λ1. Hence,

G(N,λ1) =
eλ1

z∗1 +
∑N
k=2

z∗k−z
∗
k−1∑k−1

l=0 z
∗
l

+
eλ1−z∗N∑N
l=0 z

∗
l

≤ eλ2

z∗1 +
∑N
k=2

z∗k−z
∗
k−1∑k−1

l=0 z
∗
l

+
eλ2−z∗N

1+z∗1+···+z∗N

≤ eλ2

z
′
1 +

∑N
k=2

z
′
k−z

′
k−1∑k−1

l=0 z
′
l

+
eλ2−z′N

1+z
′
1+···+z′N

= G(N,λ2) (40)

The second inequality follows from the fact that
(z′1, · · · , z′N ) minimizes z1 +

∑N+1
k=2

zk−zk−1∑k−1
l=0 zl

subject to the

constraint 1 ≤ z1 ≤ z2 ≤ · · · ≤ zN ≤ zN+1 = eλ2 .
Hence, G(N,λ) is increasing in λ for fixed N . �
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z∗1 +
z∗2 − z∗1
1 + z∗1

+ · · ·+ eρy − z∗i
1 + z∗1 + · · ·+ z∗i

+
z∗i+1 − eρy

1 + z∗1 + · · ·+ z∗i + eρy
+ · · · .+ eρL − z∗N

1 + z∗1 + · · ·+ z∗i + eρy + z∗i+1 + · · ·+ z∗N

< z∗1 +
z∗2 − z∗1
1 + z∗1

+ · · ·+ eρL − z∗N
1 + z∗1 + · · ·+ z∗i + z∗i+1 + · · ·+ z∗N

(38)

APPENDIX F
PROOF OF THEOREM 5

When N relay nodes are uniformly placed along a
line, we will have yk = kL

N+1 . Then our formula for
achievable rate RoptPT

(y1, y2, · · · , yN ) for sum power con-
straint becomes: RN = C(PTσ2

1
f(N) ) where f(N) = aN +∑N+1

k=2
akN−a

k−1
N

1+aN+···+ak−1
N

with aN = e
ρL
N+1 = e

λ
N+1 .

Since aN > 1 for all N < ∞ and ρ > 0, we have
f(N) > aN for all N ≥ 1 and hence, lim infN f(N) ≥
limN→∞ aN = 1.

Now,

f(N) = aN +

N∑
k=1

ak+1
N − akN

1 + aN + · · ·+ akN

= aN + (aN − 1)2
N∑
k=1

akN
ak+1
N − 1

≤ aN + (aN − 1)2
N∑
k=1

akN
akN − 1

= e
λ

N+1 + (e
λ

N+1 − 1)2
N∑
k=1

e
kλ
N+1

e
kλ
N+1 − 1

≤ e
λ

N+1 + (e
λ

N+1 − 1)2
N∑
k=1

e
kλ
N+1

kλ
N+1

= e
λ

N+1 + (e
λ

N+1 − 1)2 (N + 1)

λ

N∑
k=1

e
kλ
N+1

k
(41)

where the first inequality follows from the fact that
aN > 1 and the second inequality follows from the fact
that e

kλ
N+1 ≥ 1 + kλ

N+1 .

Now, by Cauchy-Schwartz inequality,

N∑
k=1

e
kλ
N+1

k
≤

√√√√(

N∑
k=1

e
2kλ
N+1 )(

N∑
k=1

1

k2
) (42)

Since
∑∞
k=1

1
k2 = π2

6 , we can write:

N∑
k=1

e
kλ
N+1

k
≤

√√√√(

N∑
k=1

e
2kλ
N+1 )

π2

6
(43)

Hence, by (43) and (41),

f(N) ≤ e
λ

N+1 + (e
λ

N+1 − 1)2
(N + 1)π
√

6λ

√√√√ N∑
k=1

e
2kλ
N+1

= e
λ

N+1 + (e
λ

N+1 − 1)2
(N + 1)π
√

6λ

√√√√e
2λ
N+1

(e
2Nλ
N+1 − 1)

(e
2λ
N+1 − 1)

(44)

Now, since e
2Nλ
N+1 − 1 ≤ e

2Nλ
N+1 ≤ e2λ, we obtain:

f(N) ≤ e
λ

N+1 + (e
λ

N+1 − 1)2
(N + 1)π
√

6λ
eλe

λ
N+1

√
1

(e
2λ
N+1 − 1)

= e
λ

N+1 + (e
λ

N+1 − 1)
3
2

(N + 1)π
√

6λ
eλe

λ
N+1

√
1

(e
λ

N+1 + 1)

Hence,

lim sup
N

f(N)

≤ 1 +
πeλ√

12
lim
N→∞

(N + 1)

λ
(e

λ
N+1 − 1)

3
2

Putting q = λ
N+1 ,

lim sup
N

f(N) ≤ 1 +
πeλ√

12
lim
q→0

√
q lim
q→0

(
eq − 1

q
)

3
2

= 1

Now, we have proved that lim supN f(N) ≤ 1 ≤
lim infN f(N) and hence limN→∞ f(N) = 1. Hence,
limN→∞RN = C(PTσ2 ) and the theorem is proved. �

APPENDIX G
PROOF OF THEOREM 7
As we have seen in Section 4, our problem is a neg-
ative dynamic programming problem (i.e., the N case
of [29], where single-stage rewards are non-positive). It
is to be noted that Schäl [29] discusses two other kind
of problems as well: the P case (single-stage rewards
are positive) and the D case (the reward at stage k is
discounted by a factor αk, where 0 < α < 1). In this
appendix, we first state a general-purpose theorem for
the value iteration (Theorem 11), prove it by some results
of [29], and then we use this theorem to prove Theorem
7.

G.1 A General Result (Derived from [29])
Consider an infinite horizon total cost MDP whose state
space S is an interval in R and the action space A is
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[0,∞). Let the set of possible actions at state s be denoted
by A(s). Let the single-stage cost be c(s, a, w) ≥ 0 where
s, a and w are the state, the action and the disturbance,
respectively. Let us denote the optimal expected cost-
to-go at state s by V ∗(s). Let the state of the system
evolve as sk+1 = h(sk, ak, wk), where sk, ak and wk
are the state, the action and the disturbance at the k-
th instant, respectively. Let s∗ ∈ S be an absorbing state
with c(s∗, a, w) = 0 for all a, w. Let us consider the value
iteration for all s ∈ S, with V (0)(·) = 0:

V (k+1)(s) = inf
a∈[0,∞)

Ew
(
c(s, a, w) + V (k)(h(s, a, w))

)
, s 6= s∗

V (k+1)(s∗) = 0 (45)

We provide some results and concepts from [29], which
will be used later to prove Theorem 7.

Theorem 8: [Theorem 4.2 ([29])] V (k)(s) → V (∞)(s) for
all s ∈ S, i.e., the value iteration (45) converges. �

Let us recall that Γk(s) is the set of minimizers of (45)
at the k-th iteration at state s, if the infimum is achieved
at some a < ∞. Γ∞(s) := {a ∈ A : a is an accumulation
point of some sequence {ak} where each ak ∈ Γk(s)}.
Γ∗(s) is the set of minimizers in the Bellman Equation.

Let C(A) be the set of nonempty compact subsets of
A. The Hausdorff metric d on C(A) is defined as follows:

d(C1, C2) = max{ sup
c∈C1

ρ(c, C2), sup
c∈C2

ρ(c, C1)}

where ρ(c, C) is the minimum distance between the point
c and the compact set C.

Proposition 6: [Proposition 9.1([29])] (C(A), d) is a sep-
arable metric space.

A mapping φ : S → C(A) is called measurable if
it is measurable with respect to the Borel σ-algebra of
(C(A), d).
F̂(S × A) is the set of all measurable functions v :

S × A → R which are bounded below and where every
such v(·) is the limit of a non-decreasing sequence of
measurable, bounded functions vk : S ×A → R.

We will next present a condition followed by a theo-
rem. The condition, if satisfied, implies the convergence
of value iteration (45) to the optimal value function
(according to the theorem).

Condition 1: [Derived from Condition A in [29]]
(i) A(s) ∈ C(A) for all s ∈ S and A : S → C(A) is

measurable.
(ii) Ew(c(s, a, w)+V (k)(h(s, a, w))) is in F̂(S×A) for all

k ≥ 0. �

Theorem 9: [Theorem 13.3, [29]] If c(s, a, w) ≥ 0 for all
s, a, w and Condition 1 holds:

(i) V (∞)(s) = V ∗(s), s ∈ S.
(ii) Γ∞(s) ⊂ Γ∗(s).

(iii) There is a stationary optimal policy f∞ where f :
S → A and f(s) ∈ Γ∞(s) for all s ∈ S. �

The next condition and theorem deal with the situation
where the action space is noncompact.

Condition 2: [Condition B ([29])] There is a measurable
mapping A : S → C(A) such that:

(i) A(s) ⊂ A(s) for all s ∈ S.

(ii) infa∈A(s)−A(s) Ew
(
c(s, a, w) + V (k)(h(s, a, w))

)
>

infa∈A(s) Ew
(
c(s, a, w) + V (k)(h(s, a, w))

)
for all k ≥ 0.

�
This condition requires that for each state s, there is

a compact set A(s) of actions such that no optimizer of
the value iteration lies outside the set A(s) at any stage
k ≥ 0.

Theorem 10: [Theorem 17.1, [29]] If Condition 2 is satis-
fied and if the three statements in Theorem 9 are valid for
the modified problem having admissible set of actions
A(s) for each state s ∈ S, then those statements are valid
for the original problem as well. �

Now we will provide an important theorem which will
be used to prove Theorem 7.

Theorem 11: If the value iteration (45) satisfies the fol-
lowing conditions:

(a) For each k, Ew
(
c(s, a, w)+V (k)(h(s, a, w))

)
is jointly

continuous in a and s for s 6= s∗.
(b) The infimum in (45) is achieved in [0,∞) for all s 6=

s∗.
(c) For each s ∈ S, there exists a(s) <∞ such that a(s)

is continuous in s for s 6= s∗, and no minimizer of
(45) lies in (a(s),∞) for each k ≥ 0.

Then the following hold:
(i) The value iteration converges, i.e., V (k)(s) →

V (∞)(s) for all s 6= s∗.
(ii) V (∞)(s) = V ∗(s) for all s 6= s∗.

(iii) Γ∞(s) ⊂ Γ∗(s) for all s 6= s∗.
(iv) There is a stationary optimal policy f∞ where f :

S \ {s∗} → A and f(s) ∈ Γ∞(s) ∀ s 6= s∗. �

Proof of Theorem 11: By Theorem 8, the value iteration
converges, i.e., V (k)(s) → V (∞)(s). Moreover, V (k)(s) is
the optimal cost for a k-stage problem with zero terminal
cost, and the cost at each stage is positive. Hence, V (k)(s)
increases in k for every s ∈ S . Thus, for all s ∈ S ,
V (k)(s) ↑ V (∞)(s).

Now, Condition 2 and Theorem 10 say that if no opti-
mizer of the value iteration in each stage k lies outside a
compact subset A(s) of A(s) ⊂ A, then we can deal with
the modified problem having a new action space A(s). If
the value iteration converges to the optimal value in this
modified problem, then it will converge to the optimal
value in the original problem as well, provided that the
mapping A : S → C(A) is measurable. Let us choose
A(s) := [0, a(s)], where a(s) satisfies hypothesis (c) of
Theorem 11. Since a(s) is continuous at s 6= s∗, for any
ε > 0 we can find a δs,ε > 0 such that |a(s) − a(s′)| < ε
whenever |s − s′| < δs,ε, s 6= s∗, s′ 6= s∗. Now, when
|a(s)−a(s′)| < ε, we have d([0, a(s)], [0, a(s′)]) < ε. Hence,
the mapping A : S → C(A) is continuous at all s 6= s∗,
and thereby measurable in this case. Hence, the value
iteration (45) satisfies Condition 2.
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Thus, the value iteration for s 6= s∗ can be modified
as:

V (k+1)(s) = inf
a∈[0,a(s)]

Ew(c(s, a, w) + V (k)(h(s, a, w))) (46)

Now, Ew(c(s, a, w) + V (k)(h(s, a, w))) is continuous (can
be discontinuous at s = s∗, since this quantity
is 0 at s = s∗) on S × A (by our hypothesis).
Hence, Ew(c(s, a, w) + V (k)(h(s, a, w))) is measurable
on S × A. Also, it is bounded below by 0. Hence,
it can be approximated by an increasing sequence
of bounded measurable functions {vn,k}n≥1 given by
vn,k(s, a) = min{Ew(c(s, a, w) + V (k)(h(s, a, w))), n}.
Hence, Ew(c(s, a, w) + V (k)(h(s, a, w))) is in F̂(S ×A).

Thus, Condition 1 is satisfied for the modified problem
and therefore, by Theorem 9, the modified value iteration
in (46) converges to the optimal value function. Now, by
Theorem 10, we can argue that the value iteration (45)
converges to the optimal value function in the original
problem and hence V (∞)(s) = V ∗(s) for all s ∈ S \ s∗.
Also, Γ∞(s) ⊂ Γ∗(s) for all s ∈ S \ s∗ and there exists a
stationary optimal policy f∞ where f(s) ∈ Γ∞(s) for all
s ∈ S \ s∗ (by Theorem 9).

G.2 Proof of Theorem 7
This proof uses the results of Theorem 11 provided in
this appendix. Remember that the state EOL is absorb-
ing and c(EOL, a, w) = 0 for all a, w. We can think of it
as state 0 so that our state space becomes [0, 1] which is
a Borel set. We will see that the state 0 plays the role of
the state s∗ as mentioned in Theorem 11.

We need to check whether the conditions (a), (b), and
(c) in Theorem 11 are satisfied for the value iteration
(21). Of course, J (0)

ξ (s) = 0 is concave, increasing in
s ∈ (0, 1]. Suppose that J (k)

ξ (s) is concave, increasing in
s for some k ≥ 0. Also, for any fixed a ≥ 0, seρa

1+seρa is
concave and increasing in s. Thus, by the composition
rule for the composition of a concave increasing function
J

(k)
ξ (·) and a concave increasing function seρa

1+seρa , for any

a ≥ 0 the term J
(k)
ξ

(
seρa

1+seρa

)
is concave, increasing over

s ∈ (0, 1]. Hence,
∫ a

0
βe−βzs(eρz − 1)dz + e−βa

(
s(eρa −

1) + ξ + J
(k)
ξ

(
seρa

1+seρa

))
(in (21)) is concave increasing

over s ∈ (0, 1]. Since the infimization over a preserves
concavity, we conclude that J

(k+1)
ξ (s) is concave, in-

creasing over s ∈ (0, 1]. Hence, for each k, J (k)
ξ (s) is

continuous in s over (0, 1), since otherwise concavity
w.r.t. s will be violated. Now, we must have J

(k)
ξ (1) ≤

lims↑1 J
(k)
ξ (s), since otherwise the concavity of J (k)

ξ (s)

will be violated. But since J
(k)
ξ (s) is increasing in s,

J
(k)
ξ (1) ≥ lims↑1 J

(k)
ξ (s). Hence, J (k)

ξ (1) = lims↑1 J
(k)
ξ (s).

Thus, J (k)
ξ (s) is continuous in s over (0, 1] for each k.

Hence,
∫ a

0
βe−βzs(eρz − 1)dz + e−βa(s(eρa − 1) + ξ +

J
(k)
ξ ( seρa

1+seρa )) is continuous in s, a for s 6= 0. Hence,
condition (a) in Theorem 11 is satisfied.

Now, we will check condition (c) in Theorem 11.
By Theorem 8, the value iteration converges, i.e.,

J
(k)
ξ (s) → J

(∞)
ξ (s). Also, J (∞)

ξ (s) is concave, increasing
in s ∈ (0, 1] and hence continuous. Moreover, J (k)

ξ (s) is
the optimal cost for a k-stage problem with zero terminal
cost, and the cost at each stage is positive. Hence, J (k)

ξ (s)
increases in k for every s ∈ (0, 1]. Thus, for all s ∈ (0, 1],
J

(k)
ξ (s) ↑ J (∞)

ξ (s).
Again, J (k)

ξ (s) is the optimal cost for a k-stage problem
with zero terminal cost. Hence, it is less than or equal to
the optimal cost for the infinite horizon problem with the
same transition law and cost structure. Hence, J (k)

ξ (s) ≤
Jξ(s) for all k ≥ 1. Since J

(k)
ξ (s) ↑ J (∞)

ξ (s), we have
J

(∞)
ξ (s) ≤ Jξ(s).
Now, consider the following two cases:

G.2.1 β > ρ

Let us define a function ψ : (0, 1] → R by ψ(s) =
J

(∞)
ξ (s)+θs

2 . By Proposition 1, Jξ(s) < θs for all s ∈ (0, 1].
Hence, J (∞)

ξ (s) < ψ(s) < θs and ψ(s) is continuous
over s ∈ (0, 1]. Since β > ρ and J

(k)
ξ (s) ∈ [0, θ] for

any s in (0, 1], the expression θs + e−βa
(
− θseρa +

ξ + J
(k)
ξ

(
seρa

1+seρa

))
obtained from the R.H.S of (21) con-

verges to θs as a→∞. A lower bound to this expression
is θs+ e−βa(−θseρa). With β > ρ, for each s, there exists
a(s) <∞ such that θs+ e−βa(−θseρa) > ψ(s) for all a >

a(s). But θs+infa≥0 e
−βa

(
−θseρa+ξ+J

(k)
ξ

(
seρa

1+seρa

))
is

equal to J
(k+1)
ξ (s) < ψ(s). Hence, for any s ∈ (0, 1], the

minimizers for (18) always lie in the compact interval
[0, a(s)] for all k ≥ 1. Since ψ(s) is continuous in s, we
can choose a(s) as a continuous function of s on (0, 1].

G.2.2 β ≤ ρ
Fix A, 0 < A <∞. Let K := 1

βA

(
ξ + (eρA − 1)

)
+(eρA−1).

Then, by Proposition 2, Jξ(s) ≤ K for all s ∈ (0, 1]. Now,
we observe that the objective function (for minimiza-
tion over a) in the R.H.S of (21) is lower bounded by∫ a

0
βe−βzs(eρz − 1)dz, which is continuous in s, a and

goes to ∞ as a → ∞ for each s ∈ (0, 1]. Hence, for
each s ∈ (0, 1], there exists 0 < a(s) < ∞ such that∫ a

0
βse−βz(eρz − 1)dz > 2K for all a > a(s) and a(s)

is continuous over s ∈ (0, 1]. But J (k+1)
ξ (s) ≤ Jξ(s) ≤ K

for all k. Hence, the minimizers in (21) always lie in
[0, a(s)] where a(s) is independent of k and continuous
over s ∈ (0, 1].

Let us set a(0) = a(1).8 Then, the chosen function a(s)
is continuous over s ∈ (0, 1] and can be discontinuous
only at s = 0. Thus, condition (c) of Theorem 11 has
been verified for the value iteration (21). Condition (b)

8. Remember that at state 0 (i.e., state EOL), the single stage cost
is 0 irrespective of the action, and that this state is absorbing. Hence,
any action at state 0 can be optimal.
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of Theorem 11 is obviously satisfied since a continuous
function over a compact set always has a minimizer. �

Remark: Observe that in our value iteration (21) it is
always sufficient to deal with compact action spaces, and
the objective functions to be minimized at each stage of
the value iteration are continuous in s, a. Hence, Γk(s)
is nonempty for each s ∈ (0, 1], k ≥ 0. Also, since there
exists K > 0 such that J (k)

ξ (s) ≤ K for all k ≥ 0, s ∈ (0, 1],
it is sufficient to restrict the action space in (21) to a set
[0, a(s)] for any s ∈ (0, 1], k ≥ 0. Hence, Γk(s) ⊂ [0, a(s)]
for all s ∈ (0, 1], k ≥ 0. Now, for a fixed s ∈ (0, 1], any
sequence {ak}k≥0 with ak ∈ Γk(s), in bounded. Hence,
the sequence must have a limit point. Hence, Γ∞(s) is
nonempty for each s ∈ (0, 1]. Since Γ∞(s) ⊂ Γ∗(s), Γ∗(s)
is nonempty for each s ∈ (0, 1].

APPENDIX H
PROOFS OF PROPOSITIONS 3, 4 AND 5
H.1 Proof of Proposition 3
Fix ξ. Consider the value iteration (21). Let us start with
J

(0)
ξ (s) := 0 for all s ∈ (0, 1]. Clearly, J (1)

ξ (s) is concave
and increasing in s, since pointwise infimum of linear
functions is concave. Now let us assume that J (k)

ξ (s) is
concave and increasing in s. Then, by the composition
rule, it is easy to show that J (k)

ξ ( seρa

1+seρa ) is concave and
increasing in s for any fixed a ≥ 0. Hence, J (k+1)

ξ (s) is
concave and increasing, since pointwise infimum of a
set of concave and increasing functions is concave and
increasing. By Theorem 7, J (k)

ξ (s)→ Jξ(s). Hence, Jξ(s)
is concave and increasing in s. �

H.2 Proof of Proposition 4

Consider the value iteration (21). Since J
(0)
ξ (s) := 0 for

all s ∈ (0, 1], J (1)
ξ (s) is obtained by taking infimum (over

a) of a linear, increasing function of ξ. Hence, J (1)
ξ (s) is

concave, increasing over ξ ∈ (0,∞). If we assume that
J

(k)
ξ (s) is concave and increasing in ξ, then J

(k)
ξ ( seρa

1+seρa )
is also concave and increasing in ξ for fixed s and a.
Thus, J (k+1)

ξ (s) is also concave and increasing in ξ. Now,
J

(k)
ξ (s) → Jξ(s) for all s ∈ S , and J

(k)
ξ (s) is concave,

increasing in ξ for all k ≥ 0, s ∈ S. Hence, Jξ(s) is
concave and increasing in ξ. �

H.3 Proof of Proposition 5
Clearly, Jξ(s) is continuous in s over (0, 1), since oth-
erwise concavity w.r.t. s will be violated. Now, since
Jξ(s) is concave in s over (0, 1], we must have Jξ(1) ≤
lims↑1 Jξ(s). But since Jξ(s) is increasing in s, Jξ(1) ≥
lims↑1 Jξ(s). Hence, Jξ(1) = lims↑1 Jξ(s). Thus, Jξ(s) is
continuous in s over (0, 1].

Again, for a fixed s ∈ (0, 1], Jξ(s) is concave and
increasing in ξ. Hence, Jξ(s) is continuous in ξ over
ξ ∈ (0, c), ∀ c > 0. Hence, Jξ(s) is continuous in ξ over
(0,∞). �


