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Uplink Energy-Delay Trade-off under Optimized
Relay Placement in Cellular Networks

Mattia Minelli, Maode Ma, Marceau Coupechoux, Jean-Marc Kelif, Marc Sigelle, and Philippe Godlewski

Abstract—Relay nodes-enhanced architectures are deemed a viable solution to enhance coverage and capacity of nowadays cellular
networks. Besides a number of desirable features, these architectures reduce the average distance between users and network nodes,
thus allowing for battery savings for users transmitting on the uplink. In this paper, we investigate the extent of these savings, by
optimizing relay nodes deployment in terms of uplink energy consumption per transmitted bit, while taking into account a minimum uplink
average user delay that has to be guaranteed. A novel performance evaluation framework for uplink relay networks is first proposed to
study this energy-delay trade-off. A simulated annealing is then run to find an optimized relay placement solution under a delay constraint;
exterior penalty functions are used in order to deal with a difficult energy landscape, in particular when the constraint is tight. Finally,
results show that relay nodes deployment consistently improve users uplink energy efficiency, under a wide range of traffic conditions
and that relays are particularly efficient in non-uniform traffic scenarios.

Index Terms—Cellular networks, relay, relay placement, energy consumption, delay, simulated annealing.
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1 INTRODUCTION

Heterogeneous network deployments in modern cellular
networks are regarded as a promising solution to meet the
ever-increasing demand of wireless data and voice traffic.
They consist of installing a number of low-power nodes,
possibly of different types (e.g., femtocells, Relay Nodes
(RNs), etc.), inside the coverage area of macro base stations
(also called eNodes-B (eNBs) in this paper), resulting in a
more dense network architecture. Indeed, a higher density of
nodes entails a number of benefits, e.g., coverage and capac-
ity are boosted [1] and power efficiency improves [2]. This
generates operational expenditures savings for operators,
and lowers the environmental impact of their infrastructure.
In this paper, we study the energy-delay trade-off that arises
when relays are deployed in a cellular network. By reducing
the distance between a UE and its serving station, relays
indeed increase the uplink energy efficiency [3]. On the
other hand however, the delay to reach the base station may
be increased because of the two-hop communication.

1.1 Related Work

Results in [2], [4] et. al. show that the introduction of RNs
and picocells can reduce downlink power consumption.
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However, this applies to the uplink as well (see e.g. [5],
[6]), and the decrease in battery energy consumption for
users can be consistent: [7], [8] indicate that uplink transmit
power has a strong impact on users overall energy demand,
especially for high transmit powers.

Hence, heterogeneous networks can be considered as an
effective means to extend mobile users batteries duration,
and several research works are dedicated to this topic. Au-
thors of [5] and [9] propose a game theory-based framework
for the maximization of femtocells uplink energy efficiency,
by means of users transmit powers tuning [5] or radio
resources assignment and power control parameters opti-
mization [9]. In [10], closed-form expressions of the Signal
to Interference Ratio (SIR) and of the outage probability
are derived and used to measure the impact of femtocells
coverage and users density on energy efficiency. Both [5]
and [9] apply Quality of Service (QoS)-related constraints
to the optimization problem, so as to avoid solutions with
high energy efficiency but poor performance. Other works
in the area of cellular networks, e.g. [11], address this issue
by jointly optimizing power and user experienced QoS.

The close interaction between energy consumption and
performance [11] makes the problem of energy efficiency
maximization in relay-enhanced networks different from
those addressed in [5], [9] et al. for the femtocells deploy-
ment case; this is because RNs communicate to their donor
node through a wireless backhaul link [12], which represents
a well-known performance bottleneck. On the contrary,
small cells and femto cells benefit from a wired backhaul,
where the delay issue is less crucial. Our work is also
different from the literature on energy harvesting sensor
networks, where energy-delay trade-off is also analyzed (see
e.g. [13]). We indeed assume that relays are non-cooperative
and fueled by time-invariant energy sources.

Surprisingly, uplink RN networks energy consumption
has received limited attention in the literature, to the best
of our knowledge. Reference [14] proposes an optimization
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of the uplink power control in relay-based networks but
ignores energy consumption. Authors of [6], [15] treat the
maximization of uplink energy efficiency via either optimal
assignment of subcarriers, users powers and bit allocations
[6], or optimal radio resources allocation [15]. More than
one order of magnitude can be achieved in user power
consumption [15]. A drawback of [6] is that the decisive
impact of co-channel interference is neglected. Also, the
paper assumes that users are fixed in number and position,
and always have data to transmit. Hence, the influence of
the traffic intensity is not considered, while a number of
studies (see e.g. [11], [16]) show the importance of the traffic
load for energy efficiency evaluation. Finally, [6], [15] lack of
a thorough theoretical framework for the analysis of relay-
enhanced cellular networks uplink energy efficiency, and
they are based on the sole minimization of users energy
consumption, without investigating the necessary tradeoff
between this consumption and uplink performance. Hence,
the need arises for a finer model to study this tradeoff.

1.2 Contributions

The contributions of this paper are the following.

• We study the tradeoff between energy consumption
and users experienced delay in uplink relays cellular
networks. This is the first study of this type, to the
best of our knowledge. We show that in many cases,
relays can help both saving energy and reducing
delays despite the constraint imposed by the wireless
backhaul. We also highlight the interest of using
relays in scenarios, where traffic is not uniform.
In order to find upper bounds on the achievable
gains in terms of energy saving and/or average
delay, we formulate a constrained optimization prob-
lem. Its objective is to place the relays and tune
the network parameters so as to minimize the en-
ergy consumption per transmitted bit under delay
constraints. To solve this problem, we rely on a
Simulated Annealing (SA) algorithm enhanced with
exterior search and penalty functions. Exterior search
and penalty functions are well-known in network
modelization notably in the deterministic case but sel-
dom in the stochastic case. Our choice of the penalty
term based on the product of the objective function
and of the constraint(s) to be satisfied is new to the
best of our knowledge.

• We propose a framework for the analysis of energy
efficiency in uplink relay networks. In order to study
the delay constraint, we consider the dynamic na-
ture of cellular traffic, by means of a model of UE
arrivals and departures. This results in a hierarchical
flow level analysis. The loads of eNBs and RNs
are accounted for in the estimation of interference
and transmission delays. Our propagation model
includes shadowing and fast fading, and UEs power
control is considered. It is the first time that these
elements are jointly considered in the relay context.
Overall, the proposed model is more comprehensive,
compared to the existing literature on uplink energy
efficiency in heterogeneous networks.

Table 1: Notations

Symbol Definition
Anw network area

K,KB ,KR sets of stations, eNBs, RNs
Kc,Ac stations and area of cell c
Ak set of UEs served by station k
nRN number of RNs
B RN bias
β RB quota for backhaul link

ω(s), ω̄, φ(s) traffic density in s, average, normalized density
λ(s), ξ flow arrival rate in s, average flow size
%k(s), ρk load generated by s on station k, load of k
T (s), Tmax power transmitted by s, max. transmit power
Gk(s), ν(s, τ) path-loss, fast fading from s to station k
Pk(s), P̄ power received in k from s, target received power
γk(s, τ) SINR in k for UE in s on RN τ
Θj(τ) is 1 if station j grants RB τ , 0 otherwise
fj(τ) location of the UE scheduled by j on τ

pγ,k(s, z) PDF of γk(s)
πγ,k(s, z) SINR PDF of a scheduled UE in s
C(γ) physical data rate

RBL,j,k harmonic average of rate bw. RN k and eNB j
ρBL,j backhaul link load of station j

γBL,j,k(τ) SINR on backhaul link bw. RN k and eNB j
Dk(s) average access delay in s
Dk average delay for a flow served by k

DBL,j,k average delay on the backhaul link bw. k and j
ε(s) energy consumed by a UE in s to transmit 1 bit
Π average uplink energy consumption per bit
x a configuration

Ω, Ω̃ configuration space, constrained subspace
F , V energy function, penalty function

• We adopt a non-trivial scheduling scheme, which
represents an approximation of the Proportional Fair
(PF) scheduler, and derive the probability density
function of the Signal to Interference plus Noise Ratio
(SINR) of a scheduled UE. The choice of the schedul-
ing algorithm has indeed a decisive impact on the
delay performance. This is a novel contribution, to
the best of our knowledge.

The paper is organized as follows. Section 2 introduces
our system model, while Section 3 describes the framework
used for evaluating energy consumption per transmitted bit
and delay. Section 4 is devoted to the optimization problem
and our proposed algorithm, while Section 5 gives our
numerical results. Finally, Section 6 concludes our work.
Main notations are given in Tab. 1.

2 SYSTEM MODEL

We work on the uplink of a cellular network, where trans-
missions are performed on synchronized frames, and each
network station (i.e. eNB or RN) is associated with an uplink
frame. Frames are partitioned into Radio Blocks (RBs) of the
same bandwidth and time duration, which are labeled with
an index τ . Each RB τ in the frame of station k can be either
granted to one of the UEs served by k, or be left unused (if
there is no UE to be served).

The network is composed of a set K of K stations, and
divided into cells; let KB be the set of eNBs, and KR the
set of RNs, so that K = KB ∪ KR. We focus on one given
cell c containing one donor eNB [17] and nRN RNs, which
are connected to the eNB by means of a wireless backhaul
link (Fig. 1). The set of stations of cell c is denoted Kc. The
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Figure 1: Uplink model: Backhaul and access links use
orthogonal resources. RN transmissions towards a eNB are
orthogonal. UE transmissions towards the same node (RN
or eNB) are orthogonal. UE or RN transmissions towards
different nodes (RN or eNB) interfere.
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Figure 2: Frame structure.

surface Ac of cell c is defined as the region where UEs are
served by one of the stations of c, and its area is denoted Ac.
Similarly, surface Ak, of area Ak, is the region where UEs
are served by station k.

UEs select their serving station based on the highest
product of received downlink pilot power times a station
specific bias. They are then served over the access link.
The technique of biasing the user association is referred to
in literature as cell range expansion [18], and it is deemed
beneficial for network performance as it allows for load
balancing. We assume that eNBs have a bias of 1 and RNs
have a common bias B.

2.1 Frame Structure

Access link and backhaul link transmissions are dedicated
two orthogonal sections of the frame (Fig. 2). RN transmis-
sions on the backhaul link, which uses a quota β of the RBs,
do not interfere with UEs transmissions on the access link.
This choice is widely adopted in the literature (see e.g. [14],
[15]), as it avoids interference between RNs and UEs on the
uplink. For the same reason, we assume that β is the same
for all network stations. The value of β is supposed to be set
by the operator and based on considerations on the overall
network performance, while our analysis is focused on the
performance related to one given network cell, given β.

2.2 Traffic Model
We assume that UEs arrive in the network accord-
ing to a spatial Poisson point process of intensity
λ(s) [arrivals/s/m2], transmit a flow of average size
ξ [bits] to their serving station, and leave the network. UEs
are assumed to be static during their file transfer1. Flows
transmitted from UEs to a RN on the access link are then
forwarded by the RN to its donor eNB on the backhaul link.

The traffic density ω(s) at a given location s is de-
noted by ω(s) = λ(s)ξ [bits/s/m2], while the average
traffic density ω̄ in the network can be computed as
ω̄ = (1/Anw)

∫
Anw λ(s)ξds [bits/s/m2], where Anw is the

overall network surface, of area Anw
2. We define φ(s) ,

ω(s)/ω̄,∀s ∈ Anw, to account for the local variation of the
traffic density with respect to ω̄. The ratio φ(s)/Anw can be
seen as the spatial Probability Density Function (PDF) of
UEs arrivals. We also define Φk ,

∫
Ak φ(s)ds for the sake of

further developments.
The typical number of bits carried by a RB is assumed

to be much smaller than ξ. Hence, access link buffer queue
of all stations k ∈ K can be modeled as an M/G/1/PS
(Processor Sharing) queue (Fig. 3), and its load is denoted
with ρk. It is the sum of load contributions %k(s) over Ak,
so that ρk =

∫
Ak %k(s)ds. Only stable scenarios, i.e., ρk <

1,∀k ∈ K are considered in this work. We define the vectors
ρ = [ρ1 · · · ρK ] and ρ−k = [ρ1 · · · ρk−1 ρk+1 · · · ρK ],
for the sake of further developments. Let’s introduce a
binary random variable Θk(τ), which is equal to one when
RB τ in station k frame is granted to a UE, and equal to
zero otherwise. We will assume that the probability for any
station k to receive data on RB τ depends only on ρk, and is
equal to Eτ [Θk(τ)] = ρk.

Backhaul link buffer queue is also modeled as a multi-
class M/G/1/PS (Fig. 3). Each flow in the backhaul queue
belongs to a class k ∈ {1 · · ·nRN}, according to the trans-
mitting RN. The model shown in Fig. 3 thus allows for a
hierarchical flow level analysis.

2.3 Propagation Model
Consider a UE transmitting on RB τ , and located on s. We
denote with T (s) its transmit power, and with Gk(s) the
component of the channel gain towards station k due to
distance dependent attenuation and shadowing. We assume
Gk(s) constant on all RBs3. The power Pk(s) received by
k from the considered UE is thus obtained as: Pk(s, τ) =
T (s)Gk(s)ν(s, τ), where ν(s, τ) is the variable component
due to the fast fading. We adopt here a block Rayleigh
fading model [21], i.e., fast fading is constant on a RB,
and fast fading realizations associated to any two distinct
RBs or locations are independent of one another. The Full
Compensation Power Control (FCPC) scheme adopted by
the LTE standard [17] is chosen to determine T (s). We thus
have: T (s) = min{Tmax,

P̄
Gk(s)}, s ∈ Ak, where Tmax is

1Including mobility would require significant changes in the
queuing model (see e.g. [19]) and is left for further study.

2We assume Anw large enough so that interference in cell c is
accurately computed.

3The underlying assumption is that shadowing does not signifi-
cantly change in time, for a fixed location. This is consistent with, e.g.,
the measurements in [20].
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Figure 3: Queuing model.

the UE maximum transmit power and P̄ is a target received
power broadcast by k to all UEs. We assume that P̄ has the
same value P̄=P̄eNB for all eNBs, and P̄=P̄RN for all RNs,
for the sake of simplicity.

2.4 SINR model

Consider a UE located in s and a RB τ . We define the
instantaneous SINR γk(s, τ) experienced by station k for the
considered UE as:

γk(s, τ) =
Pk(s, τ)∑

j∈K,j 6=k Θj(τ)Pk(fj(τ), τ) +N
, (1)

where fj(τ)∈Aj yields the position of the UE scheduled
by station j on RB τ , and N is the thermal noise power.
Recall that Θj(τ) captures the activity of station j on τ .
Because of the block fading assumption, the received power
depends on τ . Interferers of the UE located in s are the UEs
scheduled by other stations, hence the variable fj(τ). In the
following, we drop the dependency of all variables on τ , for
the sake of simplicity. Let pγ,k(s, z), z ≥ 0 be the PDF of
γk(s). Following [22], [23], we approximate pγ,k(s, z) by a
lognormal distribution, i.e., γk(s)∼Log−N (µγ,k, σγ,k) (see
App. B for the derivation of µγ,k and σγ,k).

2.5 Scheduling Policy

Let’s assume that stations have perfect Channel State In-
formation (CSI) about all served UEs and consider a given
frame of station k. We label the UEs served by k during
the considered frame with an index i = 1 · · ·U , while their
locations are denoted by s1 · · · sU respectively. Every station
implements a Maximum Quantile Scheduling [24], [25] (MQS)
among served UEs. The MQS scheduler of station k assigns
RB τ to the UE i that maximizes its instantaneous SINR
γk(si, τ), with respect to γk(si, τ − h), h = 1 · · ·W − 1

over a window of W RBs (more details can be found in
App. C). This policy has the property of being fair in RBs
allocation between UEs, while maintaining a good through-
put performance [25]. Moreover, [25] shows that the perfor-
mance degradation introduced by an imperfect estimation
of the SINR distribution can be lower than that incurred
in practical implementations of other popular scheduling
algorithms. The MQS scheduling differs from the well-
known PF scheduler [26], because the latter allocates each
radio resource to the user maximizing its scaled SINR
γk(si, τ)/γ̄k(si) on τ , where γ̄k(si) represents the average
SINR experienced by k for user i over the last W RBs.
However, for large values of W its behavior approximates
that of a PF scheduler (see e.g. [24]).

Now, consider the distribution πγ,k(si, z)dz =
P(z≤γk(si)≤z+dz | fk=si), si ∈ Ak, z ≥ 0 of γk(si) con-
ditioned to fk=si, i.e., the PDF of the SINR of a scheduled UE.
Contrary to pγ,k(si, z), this distribution is not lognormal.

Theorem 1. The distribution πγ,k(si, z) can be expressed as:

πγ,k(si, z) = pγ,k(si, z)
W∑
n=1

Qn(i, z)Tk(W,n), (2)

where

Qn(i, z) =

(
W − 1

n− 1

)(∫ z

0
pγ,k(si, t)dt

)W−n
×(

1−
∫ z

0
pγ,k(si, t)dt

)n−1

,

Tk(W,n) =
W 2(1− ρk)

(W − ρk(W − n))
2 .

Proof. See App. C.

2.6 UEs Physical Data Rate
We define the function C(γ) > 0, yielding the physical data
rate achieved, when the receiver experiences SINR γ (or
equivalently the throughput of a user, if it were alone in
the serving area of its serving station). We assume that C(γ)
is non decreasing in γ.

3 PERFORMANCE EVALUATION

In this section, we define and derive our performance pa-
rameters in terms of delay and energy consumption per
transmitted bit. We first obtain the expressions of access
and backhaul link loads, and then we use them to get flow
transmission delays.

3.1 Access Link Load
Let’s focus on station k, and recall that %k(s), s ∈ Ak is the
contribution of s to the load ρk of station k. We have the
following Lemma:

Lemma 1. The local contribution %k(s), s ∈ Ak to the load of
the access link buffer queue of station k is expressed by:

%k(s) =
1

1− β
Eτ

[
ω̄φ(s)

C(γk(s, τ))

∣∣∣∣fk(τ) = s

]
. (3)

Proof. See Appendix A.1.
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Theorem 2. The load ρk of the access link of station k can be
expressed as:

ρk =
ω̄

1− β

∫
Ak
φ(s)

∫ ∞
0

πγ,k(s, z)

C(z)
dzds. (4)

Proof. See Appendix A.2.

Note first that if all UEs transmit at power T (s) <
Tmax,∀s ∈ Ak, then πγ,k(s, z) = πγ,k(z), ∀s ∈ Ak and
equation (4) reduces to: ρk = ω̄Φk

1−βEγ
[

1
C(γ)

]
. Φk can thus

be seen as the effective area covered by k, in terms of traffic
density.

Note then that ρk is a function of ρ−k, as the
load depends on the interference from other sta-
tions. We define the operator Fk(ρ−k) = ω̄/(1 −
β)
∫
Ak φ(s)

∫∞
0 πγ,k(s, z)/C(z)dzds, which yields the value

of ρk corresponding to a given ρ−k.

Lemma 2. The operator F (ρ) = (F1(ρ−1) · · ·FK(ρ−K))
maps ρ to a finite K-dimensional interval.

Proof. See Appendix A.3.

Theorem 3. There exists at least one ρ∗ such that F (ρ∗) =
ρ∗,ρ∗ ∈

∏
k∈K[0, ρmax

k ].

Proof. See Appendix A.4.

It is not feasible in general to draw any conclusion
about the uniqueness of the fixed point. However, following
the approach of [27], we start from a single cell without
interference (ρ = 0) and iterate function F , so as to model
a scenario of increasing traffic.

3.2 Backhaul Link Load

We now focus on the backhaul link queue of the eNB of
cell c. Let j ∈ Kc be the index of the eNB and ρBL,j the
load of the queue. The probability for a given RN k served
by j to be selected for backhaul transmission is equal to
Φk/

∑
k∈Kc Φk, where Φk =

∫
Ak φ(s)ds. Hence, ρBL,j can

be written as:

ρBL,j =
ω̄

β

nRN∑
k=1

Φk
RBL,j,k

, (5)

where the inverse of RBL,j,k is the average of the inverse
of the rate on the backhaul link between RN k and eNB j,
which depends on propagation conditions, and is equal to:
RBL,j,k = 1/Eτ [ 1

C(γBL,j,k(τ)) ], where γBL,j,k(τ) denotes the
SINR on the backhaul of RN k served by eNB j, during RB
τ . A detailed derivation of RBL,j,k is presented in App. D.

3.3 Flow Average Transmission Delay

The flow average transmission delay is an effective param-
eter to measure network uplink performance. It is the sum
of the average access delay and the average backhaul delay.
In this section, we derive its formulation. Consider a user
located in s, served by RN k with donor eNB j. We denote
by Dk(s) the average access delay of a flow in s, by Dk

the average delay of a flow served by k and by DBL,j,k the
average delay on the backhaul link.

Lemma 3. The average access delay in s is expressed by:

Dk(s) =
ξ

1− ρk

∫ ∞
0

πγ,k(s, z)

(1− β)C(z)
dz. (6)

Proof. See Appendix A.5.

Corollary 1. The average access delay for a UE served by k ∈ KR
is:

Dk =

∫
Ak

φ(s)

Φk
Dk(s)ds. (7)

Proof. See Appendix A.6.

Lemma 4. The average backhaul link delay is expressed by:

DBL,j,k =
ξ

(1− ρBL,j)βRBL,j,k
, k ∈ KR, j ∈ KB . (8)

Proof. See Appendix A.7.

Proposition 1. The average transmission delay D̄c for an uplink
flow transmitted in cell c is equal to:

D̄c =
∑
k∈Kc

Φk
Ak

(Dk +DBL,j,k). (9)

3.4 Energy Consumption per Transmitted Bit
Let ε(s) be the energy consumed by a UE located in s ∈
Ak for transmitting one bit. This metric is sometimes called
Energy Consumption Rating in the literature [28], [29]. We
have:

ε(s) = Eτ

[
T (s)

C(γk(s, τ))

∣∣∣∣fk(τ) = s

]
= T (s)

∫ ∞
0

πγ,k(s, z)

C(γk(s, z))
dz, s ∈ Ak (10)

which can be also expressed as a function of Dk(s): ε(s) =
T (s)Dk(s)(1 − ρk)(1 − β), s ∈ Ak. The average uplink
energy consumption per bit Π associated to UEs in cell
c is given by:

Π =
1

Ac

∫
Ac
φ(s)ε(s)ds

=
1− β
Ac

∑
k∈Kc

(1− ρk)

∫
Ak
T (s)Dk(s)φ(s)ds. (11)

4 OPTIMIZATION

In this Section, we discuss the optimization of UEs uplink
energy efficiency. The proposed algorithm aims at minimiz-
ing the UE average energy consumption per transmitted bit
in (11), by optimizing P̄ , B and the RN placement in the
cell of interest, for a given ω̄, nRN and traffic spatial profile
φ(s). Our optimization is constrained to respect a maximum
tolerable value of D̄c in (9), so as to take into account the
users experienced quality of service.

RN placement is usually optimized with respect to the
downlink performance of the network because of its larger
traffic volume. On the contrary, we consider here the uplink
performance because we aim at finding upper bounds on
the possible gains that an operator can achieve in terms
of energy and/or average delay on this link. Note how-
ever that with the growing traffic related to multimedia
content sharing, social networks and other peer-to-peer
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applications, uplink and downlink traffics tend to be more
balanced4.

4.1 Problem Statement
We assume that RNs can be placed on a discrete and finite
grid of candidate sites inside cell c5, while the positions
of RNs outside cell c are assumed to be already set by
the network operator, and not modifiable during the op-
timization. Position of a given RN i is denoted with z(i).
Moreover, we define P̄ = [P̄eNB P̄RN ]. Target received
powers P̄eNB and P̄RN can vary between a minimum and a
maximum value, denoted with P̄min and P̄max respectively.
Similarly, we assume Bmin ≤ B ≤ Bmax (see Section 2).
Now, the configuration x of the network is defined as the set
of positions of the nRN RNs in cell c, plus the adopted P̄
and B:

x :
{
z(1), · · · , z(nRN ), P̄ ,B

}
,

z(i) ∈ Ac, ∀ i ∈ {1 · · ·nRN},
P̄min ≤ P̄ ≤ P̄max, Bmin ≤ B ≤ Bmax. (12)

We name configuration space the set of all configurations, and
denote it with Ω.

Our problem is to minimize energy consumption (11)
under delay constraint (9):

min
x

Π(x) (13)

s.t. D̄c(x) ≤ Dmax, x ∈ Ω, Dmax ∈ R+, (14)

where constraint (14) restricts the domain of feasible solu-
tions to the subspace:

Ω̃ = {x ∈ Ω s.t. Dc(x) ≤ Dmax} (15)

Recall that the computation of the station loads via the fixed
point iteration of Section 3.1 is required for the evaluation
of the delay.

Now, the problem (13) is in general non-convex, and
the cardinality of Ω, especially for high nRN , makes it in-
tractable via exhaustive search. Hence, we rely on stochastic
optimization algorithms, and propose a customized version
of the well-known Simulated Annealing algorithm to solve
(13). In the following, we first briefly recall the generic SA,
and then introduce our version.

4.1.1 Generic SA Algorithm
The SA is a metaheuristic aimed at solving large non-convex
problems, which has been first proposed by Metropolis [31]
and then applied on a wide range of optimization problems
(see, e.g., [32], [33]). The literature shows that the SA is an
effective algorithm, if its parameters are appropriately tuned
(see, e.g., [34]). Let F(x) denote the energy6 associated with
configuration x, and consider the problem of minimizing
F(x) over the configuration space Ω. The SA explores only
a subset Ψ ⊂ Ω of the configuration space, where usually

4A joint uplink and downlink RN placement optimization is left
for further work.

5This assumption is consistent with real deployment scenarios,
where normally only a certain number of locations inside the cell are
available for RN installation [30].

6Not to be confused with the energy in J involved in the energy
consumption (11).

|Ψ| � |Ω|, and is able to find the optimal configuration
by means of an appropriate selection of the analyzed con-
figurations. At temperature T , the algorithm proceeds by
assigning to each configuration x an exponential probability,
given by:

PT (x) =
exp(−F(x)

T )

ZT
,∀x ∈ Ω, (16)

where ZT is a normalizing constant. Hence, the solution is
the x that maximizes PT (x). According to the Metropolis-
Hastings variant [35] of the SA, the set Ψ of configurations
to be analyzed is determined according to the following
procedure:
• At step m = 0 a configuration x(0) ∈ Ω is arbitrarily

selected and designated as current solution x∗(0) for
step 0: x∗(0)← x(0) ∈ Ω.

• At any step m ≥ 0: assume x∗(m− 1) is the current
solution for step m − 1. The SA will first draw a
configuration x′(m) ∈ Ω for step m from a given
probability distribution r(x∗(m − 1) → x′(m)),
named proposal law and defined by the algorithm
designer. Then, assuming that r is symmetric, x′(m)
will be accepted as current solution for step m with
probability:

PTm(x∗(m)← x′(m)) =

min

(
1, exp

(
−F(x′(m))−F(x∗(m− 1))

Tm

))
,

where Tm is a parameter called temperature, which
decreases to zero slowly enough as m → +∞, and is
such that Tm ≥ T0

1+log(m+1) . If x′(m) is not accepted,
then x∗(m) ← x∗(m − 1). In most practical imple-
mentations of the SA, the temperature is updated
following a law of the kind Tm = T0h

m, h < 1,
where h is close to 1.

4.1.2 Proposed Exterior Search Approach for SA
We seek for a minimizer of Π(x) over Ω̃, where the cardi-
nality of the feasible configurations space depends on the
value of the constraint: |Ω̃| = f(Dmax). In particular, f is an
increasing function of Dmax, because the number of feasible
configurations increases as the constraint loosens.

When Dmax is small, we can reasonably expect to have
|Ω̃| � |Ω|. This may reduce the effectiveness of the SA,
as the energy surface that the algorithm explores could be
fragmented into many isolated regions, some of which are
unreachable for the algorithm. Moreover, we can expect the
optimal solution to tightly respect the constraint, i.e., to lie
close to the border of Ω̃ [36]. Thus, the standard SA may
not appropriately cover the region where the solution is, as
many of its configurations are non feasible.

This problem can be solved by means of an exterior search
approach [37], [38]. It consists in extending the search to con-
figurations outside Ω̃, while adding a penalty to the energy of
those configurations that violate the constraint. This method
presents analogies with the Lagrangian relaxation method
(see the classic works [39], [40]), and it is regarded as a
powerful instrument to deal with constrained optimization
problems (see, e.g., [41], [42]). This idea is illustrated in
Fig. 4, where we see on a fictitious example how exterior
search can reduce the path to the optimal configuration.



7

Ω̃

x0

x∗
~∇Π

~∇V

Figure 4: Exterior search principle: the search from the
initial configuration x0 to the optimal configuration x∗

is extended to configurations outside Ω̃ (in red: interior
penalty, in blue: exterior penalty).

We thus adopt an exterior search approach, and refor-
mulate (13) as:

min
x
F(x),x ∈ Ω, (17)

where F(x) = Π(x) + 1Dc(x)>Dmax
V (x, Dmax),

and where V (x) is a function Ω 7→ R accounting for
constraint (14) and named penalty function, which plays a
crucial role in the optimization [38].

Penalty functions are classified into static, dynamic, and
adaptive. A static penalty function does not change during
the optimization. It can be represented, e.g., by a fixed
constant added to the energy of those configurations x 6∈ Ω̃,
or by a function proportional to the Euclidean distance of
the considered configuration to the feasible region [43]. On
the contrary, dynamic penalty functions can be adjusted in
accordance to the progress of the optimization. A common
approach is to gradually increase the penalty with the num-
ber of explored configurations [44], so as to guarantee the
convergence of the optimization towards a feasible solution.
Finally, an adaptive penalty function (see, e.g., [42], [45])
considers further aspects of the search, such as steering the
algorithm towards regions of the energy surface which are
deemed promising for the search.

We propose the following exterior penalty function,
which is dynamic and adaptive at the same time:

V (x, Dmax) = α(m− 1)
Π(x)

Dmax
(Dc(x)−Dmax), (18)

where α is a constant and m is the SA step. The benefits
of using function (18) are manifold. First, the penalty is
proportional to the violation of constraint Dmax, favoring
the exploration of configurations which are out of Ω̃ but
close to it, while penalizing more those which are far. At the
same time the penalty is independent of the adopted value
of Dmax, depending rather on the percentage of exceeding
delay, with respect to Dmax. This represents an important
feature when dealing with constraints of a different order
of magnitude, compared to Π(x). Moreover, the penalty is
proportional to Π(x), so as to favor the exploration of con-
figurations outside Ω̃ when they appear to be promising, i.e.,
their energy is sensibly lower to that of the current solution
(hence the adaptive nature of (18)). Finally, acting on α we
can modify the percentage of acceptance for configurations
outside Ω̃. We use here the works of Geman and Robini [46],
[47]: Choosing α(m− 1) > log(m) is sufficient to guarantee

convergence of the SA algorithm towards a feasible mini-
mizer. App. E explains why the convergence property of the
SA is maintained with such a penalty function.

Surprisingly, stochastic constrained optimization based
on exterior penalties has been seldom employed in wireless
networks optimization. There are however three recent in-
teresting references using this method [48], [49], [50]. In this
context, two important problems arise:

1) The generic choice of the penalty term itself. To our
knowledge, the most interesting analysis appears
in [50], using the so-called logarithmic barrier. Our
approach is somewhat similar: since our penalty
term is the product of the objective function Π(x)
and the constraint Dc(x) − Dmax, its gradient is a
linear combination of the gradients of both previous
expressions. Thus, in a deterministic, continuous
framework, during a phase when the penalty is
active (Dc(x) > Dmax) it adapts the minimizing
direction search to both the objective function and
the constraint opposite gradients (see Fig. 4). We
expect the stochastic, discrete SA to behave in a
somewhat similar way.

2) The selection of the Lagrangian multipliers and
their evolution during the algorithm. Apart from the
usual choice of constant parameters, an interesting
development can be found in [48]: at each step of
the SA algorithm, each penalty weight itself either
increases if the associated constraint is violated, or
decreases (in a geometric way) if this constraint has
been satisfied during several previous steps. In [49]
all penalty weights increase regularly.

To the best of our knowledge, our approach is the first
one to use stochastic constrained optimization for station
placement in wireless networks. The originality of our work
also lies in the multiplicative penalty function and the
theoretical choice of the penalty coefficient α(m− 1).

4.1.3 Initial Temperature Choice
Following [51], we address the problem of finding a good
value for the initial temperature T0 in each considered
optimization problem via dichotomic search during a series
of preliminary runs of the algorithm.

5 RESULTS

5.1 Considered Scenario and SA Parameters
The proposed theoretical framework is here applied on a
test scenario drawn according to [12, case 1] for what con-
cerns propagation, shadowing and stations transmit power.
System bandwidth is 10 MHz. The network is composed of
one central eNB surrounded by 6 eNBs regularly distributed
around it on a circle of ray 500 m. Moreover, each eNB
backhauls nRN RNs. We optimize RN placements in the
central cell only, while RNs in the surrounding cells are
assumed to be regularly distributed on a circle of radius
160 m around their donor eNB. All stations have omnidirec-
tional antennas. The same realization of shadowing (drawn
according to [12]) is used for all simulations, so as to ensure
that results be comparable. If not otherwise mentioned, we
adopt a uniform traffic density spatial distribution, i.e., φ(s)
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is constant ∀ s∈Anw, in order to draw general conclusions
about energy efficiency. In Section 5.2.5 we show the per-
formance under a non-uniform traffic distribution. We set
β=0.1.

Function C is approximated by means of the Modulation
and Coding Scheme (MCS) indicated in [52], so as to take
into account the effect of an upper-bounded capacity func-
tion, which is the typical case in real deployments. Also,
fast fading on the backhaul link is not considered. This
choice is justified by the assumption that RNs do not move,
and optimization of their positions is performed on a long-
term basis (see, e.g. [53]). We have assumed Bmin=0 and
Bmax=15 dB, with a step of 1 dB. The grid of candidate RN
sites has a step of 50 m.

The fixed point of F (ρ) is found by iteratively com-
puting stations loads. At iteration t, probabilities πγ,k(z, s)
are computed according to ρ(t − 1), obtained at iteration
t − 1, and then fed into (4) to get ρ(t)=F (ρ(t − 1)),
starting from ρ(0) = 0. Iterations are stopped when either
|ρk(t)−ρk(t−1)|<0.01,∀k ∈ K, or ∃k : ρk(t) ≥ 1, k ∈ K. In
the latter case, the analyzed configuration is labeled as non-
valid. Similarly, fixed point iterations are used to compute
the loads on the backhaul link, after ρ is determined. We
were not able to analytically prove the convergence of
the fixed point iteration (by showing for example that F
is a contraction mapping). We have however numerically
observed that the iteration always converges in less than 10
iterations.

SA algorithm is implemented as described in Section
4. Once again, we emphasize the need to optimize net-
work parameters and in particular RN locations in order
to obtain upper bounds on the achievable performance.
The algorithm yields a solution after 45 temperature steps.
For each tested temperature value, the energy of a cer-
tain number of network configurations is calculated. This
number varies according to nRN , e.g., for nRN = 2, 400
network configurations are tested at each temperature step.
For every optimization, the SA is repeated 4 times, and the
best solution among the 4 obtained solutions is elected as
a final result. The configuration corresponding to the final
result is denoted with x∗.

5.2 Numerical Results

We denote with x∗0 the configuration with minimum energy
when no RNs are deployed in the whole network, and
with Π0(x∗0) its corresponding energy. Unless otherwise
mentioned, results are expressed in terms of the energy con-
sumption ratio Π(x∗)/Π0(x∗0), so as to show the energy gain
(or loss) resulting from RN deployment, and they are plotted
against the normalized constraint Dmax/D0, where D0 is
the value of D̄c corresponding to x∗0, i.e., the average delay
when no RNs are deployed. Hence, a point in the region
Π(x∗)/Π0(x∗0)<1 corresponds to an energy consumption
per bit gain with respect to the network with no RNs,
whereas a point in the region Dmax/D0<1 corresponds to
an average uplink transmission delay gain. All the curves
that we obtained exhibit a hyperbolic-like shape, which
follows from the nature of our constrained optimization.
When Dmax is large, |Ω̃| ≈ |Ω|, the delay doesn’t play any
role in the optimization and so the energy consumption gain

reaches its maximum. Instead, if the constraint is tight we
have |Ω̃| � |Ω|, and it is unlikely that any configuration that
performs well in terms of energy efficiency lies in Ω̃.

5.2.1 Energy - Delay Trade-off
Fig. 5 shows the trade-off between energy consumption
and delay, for a varying number of RNs. Note how RN
deployment can bring consistent UEs energy savings: All
curve points below the line y = 1 correspond to an en-
ergy consumption reduction. Now, adding RNs in a cell
has two opposite effects: On the one hand, the average
distance between UEs and their serving station is reduced,
they can thus reduce their transmit power; On the other
hand, backhaul delay is increased because of the increased
relayed traffic. If the delay constraint is loose (in region
where Dmax/D0>1), increasing the number of RNs reduces
energy consumption because the latter effect is not really an
issue with respect to the constraint. If the delay constraint
is tight (when Dmax/D0 < 0.5), backhaul delay is crucial
and UEs attached to a RNs will tend to boost their transmit
power in order to reduce the access delay (P̄ is increased
in the optimal solution). This results in an overall increase
of the energy consumption. From an optimization point
of view, the cardinality |Ω̃| of the valid configurations set
tends to decrease with Dmax/D0, narrowing the space for
network optimization and reducing the achievable energy
consumption gains.

5.2.2 Effect of Offered Traffic
We analyze the effect of ω̄ on energy consumption in
Fig. 6, where Π(x∗) and Dmax are scaled with the constants
Π0(x∗0(ω̄ = 5)) and D0(ω̄ = 5) resp., obtained in a network
with no RN and a traffic density ω̄ = 5 bits/s/m2. This
choice has been made in order to keep the same scaling
constants for all curves. As we can see, the deployment of 1
RN is sufficient to reduce the average energy consumption
of UEs to less than a half, compared to the eNBs-only
network. Now, let’s focus on the line Dmax/D0(ω̄ = 5)=1
(same delay as in the eNB-only case). We note that adding a
single RN can help the terminals to be more energy efficient
without touching the quality of service and even if the
load increases to ω̄ = 20 bits/s/m2. Nonetheless, beyond
approximately ω̄ = 30 bits/s/m2, delay and interference
negatively affect user performance. From this figure, we
also observe that energy consumption is increasing with
the traffic density for any delay constraint. This effect has
been also observed for 2 and 3 relays in our simulations.
This can be explained by the fact that when load increases,
delay increases as well. To compensate for that, UEs have
to increase their data rate and so their transmit power (P̄ is
increased in the optimal solution). This results in an increase
of the energy consumption.

5.2.3 Energy Efficiency of RNs vs Small Cells
Fig. 7 compares the results obtained with our system model,
with those obtained using small cells instead of RNs (i.e.,
β = 0, DBL,j,k = 0, ∀j ∈ KB , ∀k ∈ KR), highlighting the
difference of our work with respect to those dedicated to
devices with wired (or ideal) backhaul. As expected, RNs
allow for a smaller energy consumption gain compared to
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Figure 5: Energy consumption ratio Π(x∗)/Π0(x∗0) vs
delay Dmax/D0 (ω̄ = 5 bits/s/m2).
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Figure 6: Energy consumption ratio Π(x∗)/Π0(x∗0(ω̄ = 5))
vs delay Dmax/D0(ω̄ = 5) for varying ω̄ (nRN = 1).

small cells, for a fixed Dmax. This is due to the transmission
delay on the backhaul link, to the increased delay on the
access link (due to β < 1) and to the constraints on RN
placement related to backhaul path-loss and shadowing.
Performance of RNs is more impaired when the traffic
density or nRN increase. However, RN deployment still
yields consistent uplink energy consumption gains.

5.2.4 Effectiveness of Exterior Search with Penalty Func-
tion
Fig. 8 compares the results of the optimization using penalty
function and exterior search, with those obtained by means
of an interior search. Both the interior and the exterior search
have been carried on with the same number of iterations,
for an unbiased comparison. The exterior search proves to
be more effective when the delay constraint is tight, as Ω̃ is
expected to be fragmented and |Ω̃| � |Ω|. No meaningful
gain in terms of search effectiveness is observed when the
constraint is loose, as in this case the two approaches tend
to coincide.

5.2.5 Effect of Offered Traffic Spatial Distribution
Fig. 9 compares the results obtained using a uniform φ(s)
with those obtained when φ(s) is the sum of a uniform
traffic profile and a bi-dimensional gaussian function, cen-
tered at s : {x = 115; y = 143} m, with the same average
traffic density. We can see that RNs allow for larger energy
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Figure 7: Comparison between wireless RNs and wired
small cells, for varying ω̄ and nRN (β = 0.1).
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Figure 8: Comparison between exterior and interior search
approach effectiveness (ω̄ = 5 bits/s/m2, β = 0.1, nRN =
1).

consumption gains when traffic is non-uniform. This is due
to the flexibility of the RN solution that allows relays to be
placed close to the hot-spot center.

5.2.6 Effect of Optimal Relay Placement
Fig. 10 shows the effect of optimizing the relay placement.
Optimal placement is compared to a scenario, where relays
are regularly placed at a distance of 160 m around the cell
center. The figure shows the great advantage of optimal
placement. It also highlights the fact that erroneous con-
clusions can be drawn concerning the energy consumption
gain if relays are arbitrarily placed in the cell.

6 CONCLUSION

We have proposed a comprehensive framework for the
optimization and performance evaluation of uplink energy
consumption per bit in relays-enhanced cellular networks.
This framework considers the arrival and departure of
users, and the loads of network stations. Moreover, shad-
owing and fast fading are both taken into account in the
propagation model. A realistic radio resource scheduling
scheme is assumed, and its impact on users performance
is derived. A customized optimization algorithm based on
exterior search with penalty functions is proposed for the
optimization, which is carried on under quality of service
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Figure 9: Energy consumption vs delay tradeoff: ω̄ = 0.1,
β = 0.1, comparison of uniform and non-uniform traffic
profile φ(s) for varying nRN .
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constraints. Results show a meaningful boosting of users
energy efficiency given by the deployment of RNs, even if
the average flow delay is imposed to be the same as in the
network without relays. Proposed exterior search approach
is shown to be more effective than the traditional interior
search. Further work would include the impact of mobility
on the energy-delay tradeoff or the study of cooperative
relays.

APPENDIX A
SOME PROOFS

A.1 Proof of Lemma 1

The contribution to the load is expressed as the ratio of the
traffic density ω̄φ(s) in s to the uplink rate achieved by a
scheduled UE in s. The term (1 − β) takes into account the
quota of the frame RBs dedicated to the backhaul link.

A.2 Proof of Theorem 2

The load ρk is the sum of the contributions %k(s) over Ak:
ρk =

∫
Ak %k(s)ds. Now, the term Eτ [1/C(γk(s, τ))|fk(τ) =

s] in (3) can be expressed according the law of total proba-
bility, obtaining (4).

A.3 Proof of Lemma 2
For all stations k ∈ K, the corresponding Fk(ρ−k) is increas-
ing with respect to every coordinate, as an increase in the
load of any station j 6= k, j ∈ K produces an increase in the
interference received at k. We define ∀k, ρmax

k = Fk(1 · · · 1),
which represents an upper bound for the load of k. Then,
∀k, ∀ρk, Fk(ρ−k) = Fk(max{1,ρ−k}) ≤ Fk(1 · · · 1) =
ρmax
k . Hence,

F (ρ) ∈
∏
k∈K

[0, ρmax
k ], ρmax

k ∈ R+, ∀k ∈ K. (19)

A.4 Proof of Theorem 3
This follows from Lemma 2 and (19): if F is a continuous
mapping from an K-dimensional closed interval to itself,
then the Brouwer’s fixed point theorem guarantees the
existence of at least one fixed point.

A.5 Proof of Lemma 3
The delay to transmit a bit of information is the inverse of
the UE rate, multiplied by the number xk of UEs served
by the same station during a frame (because each UE is
scheduled on a fraction 1/xk of the RBs with MQS). The av-
erage transmission delay for the whole flow is hence given
by: Dk(s) = ξEτ

[
xk

(1−β)C(γk(s,τ))

∣∣∣fk(τ) = s
]
. Considering

that P(xk = U |xk > 0) = ρU−1
k (1 − ρk), the law of total

probability can be used to average Dk(s) over xk > 0:

Dk(s) =
∞∑
U=1

P(xk = U)
ξ

1− β
UEτ [

1

C(γk(s, τ))
|fk(τ) = s],

obtaining expression (6).

A.6 Proof of Corollary 1
The statement can be verified by means of the Little’s law:
Dk = Eτ [xk(τ)]

ω̄Φk
= ρk

1−ρk
1

ω̄Φk
. Now, we can substitute (4) to

the numerator and conclude the proof.

A.7 Proof of Lemma 4
Similarly to what performed for Lemma 3, we
proceed by expressing DBL,j,k as: DBL,j,k =

ξ
βRBL,j,k

Eτ [xBL,j(τ)|xBL,j(τ) > 0] and apply the law
of total probability, obtaining:

DBL,j,k =
ξ

βRBL,j,k

∞∑
v=1

P (xBL,j(τ)=v|xBL,j(τ)>0)×

Eτ [xBL,j(τ)|xBL,j(τ) = v] ,

where xBL,j is the number of flows in the backhaul queue
of j during the considered frame. Conventionally, we set
DBL,j,j = 0. From this equation, we obtain (8).

APPENDIX B
DERIVATION OF µγ,k AND σγ,k
We use here a simple and classical approach consisting
in introducing a auxiliary Random Variable (RV). (1) can
indeed be rewritten as: γk(s) = Pk(s)x∑

j∈K,j 6=k ΘjPk(fj)x+Nx =

Pk(s)xRk, where x is a realization of a lognormal RV X ,
and R−1

k is the denominator. Note that Rk does not depend
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on s. Several authors have shown that the interference
term Ik =

∑
j 6=k ΘjPk(fj) can be well approximated by

a lognormal distribution Log−N (µIk , σ
2
Ik

) even when the
number of interferers is variable (see e.g. [22], [23]). In [22], it
is also shown that the product of an exponential RV (Pk(s))
and a lognormal RV (X) as well as the sum of two lognormal
RVs can be again approximated by a lognormal RV. Param-
eters (µγ,k, σγ,k) are then obtained by moment matching.
The derivation of (µIk , σIk), which is less standard, is now
detailed. The mean M1,Ik of Ik =

∑
j 6=k ΘjPk(fj) is equal

to:

M1,Ik = Eτ

∑
j 6=k

ΘjPk(fj)


=

∑
j 6=k

ρjEτ [Pk(fj)]

(1)
=

∑
j 6=k

ρj

∫
Aj

%j(s)

ρj
T (s)Gk(s)ds

=
∑
j 6=k

ρjYj,k,

where Yj,k =
∫
Aj

%j(s)
ρj

T (s)Gk(s)ds. (1) is obtained by
weighting the power received from location s with the
local load in s. Note that T (s)Gk(s) are input parameters
of the considered deployment scenario (propagation and
transmit power assumptions). Now %j(s) depends on the
SINR distribution in s and hence on the first moment M1,Ik

of Ik. In order to avoid an additional complexity to our
model, we make the approximation %j(s)/ρj ≈ φ(s)/Φj .
This is justified by the fact that in a urban environment, it
is unlikely that UEs transmit at their maximum power [14]
so that every user of j is received with the same average
power. The approximation comes then from the expressions
(3), (4) of %j(s) and ρj . In the same way, we derive the
variance M2,Ik of Ik: M2,Ik =

∑
j 6=k 2ρjHj,k − ρ2

jY
2
j,k,

where Hj,k =
∫
Aj

%j(s)
ρj

T 2(s)G2
k(s)ds. Again, we approxi-

mate %(s)/ρj ≈ φ(s)/Φj . Finally, µIk and σIk are found by
matching M1,Ik and M2,Ik with the mean and variance of
the approximating lognormal.

APPENDIX C
PROOF OF THEOREM 1: DERIVATION OF πγ,k(s, z)
UNDER MQS SCHEDULING

The MQS scheduler orders the values of SINR γk(s, τ −
j), j ∈ {0 · · ·W − 1} of each UE in ascending order. The
ranking ri(τ) of UE i located in si on RB τ is the rank-
ing of γk(si, τ) in the ordered vector γk(si, τ − j), j ∈
{0 · · ·W − 1}. The lower the ranking, the better the SINR
on τ (wrt the SINR on previous blocks). Station k assigns
RB τ to the UE with the lowest ri(τ), i ∈ {1 · · ·U}. We
assume W large enough so that the probability for two
or more UEs to have the same ranking is negligible. We
have: P(ri(τ)=n)=1/W, ∀n ∈ {1 · · ·W}7. Moreover, the
probability for any UE served by k to be scheduled is
P(fk(τ)=si) = 1/U,∀i ∈ {1 · · ·U} (due to the fairness in

7as in our block Rayleigh fading environment each realization of
γk(si, τ) is independent of the others.

RBs allocation). Let Πγ,k(si, z) =
∫ z
0 pγ,k(si, t)dt denote the

Cumulative Distribution Function (CDF) of γk(si, τ). We
have:

P (ri(τ)=n | γk(si, τ)=z) =(
W − 1

n− 1

)
Πγ,k(si, z)

W−n(1−Πγ,k(si, z))
n−1. (20)

We denote Qn(i, z) the right hand side, which does not
depend on U . Now, we derive πγ,k(s, z), given U . Applying
the Bayes theorem on πγ,k(s, z) we obtain:

πγ,k(s, z) =
P (fk(τ)=si | γk(si, τ)=z) pγ,k(si, z)

P(fk(τ)=si)

= P (fk(τ)=si | γk(si, τ)=z) pγ,k(si, z)U. (21)

We then work on P (fk(τ)=si | γk(si, τ)=z) applying the
law of total probability, conditioning it with respect to the
possible rankings ri(τ):

P (fk(τ)=si | γk(si, τ)=z) =
W∑
n=1

P (ri(τ)=n | γk(si, τ)=z)×

P (fk(τ)=si | γk(si, τ)=z, ri(τ)=n) . (22)

The probability of being scheduled depends on the instanta-
neous SINR only through the ranking: once we know ri(τ),
knowing γk(si, τ) does not add any additional information
regarding the probability of being scheduled by k. Hence,

P (fk(τ)=si | γk(si, τ)=z, ri(τ)=n) =

P (fk(τ)=si | ri(τ)=n) =

(
W − n
W

)U−1

, (23)

and (21) becomes

πγ,k(s, z) = pγ,k(si, z)U
W∑
n=1

Qn(i, z)

(
W − n
W

)U−1

. (24)

So far, we have found πγ,k(s, z) given U . We now define
Ψ = (W − n)/W , and use the law of total probability,
summing up πγ,k(s, z) given U for all the possible values
of U , and obtaining its general expression:

P (γk(si, τ) = z | fk(τ)=si, U > 0) =

pγ,k(si, z)
W∑
n=1

Qn(i, z)(1− ρk)
∞∑
U=1

ρU−1
k UΨU−1,(25)

where

(1− ρk)
∞∑
U=1

ρU−1
k UΨU−1 =

W 2(1− ρk)

(W − ρk(W − n))
2 . (26)

We name Tk(W,n) , W 2(1 − ρk)/ (W − ρk(W − n))
2 and

get the conclusion.
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APPENDIX D
BACKHAUL RATE DERIVATION

We start from the definition of RBL,j,k as RBL,j,k =
1/Eτ [ 1

C(γBL,j,k(τ)) ], where γBL,j,k(τ) is given by:

γBL,j,k(τ) =
PBL,j(sRN,j,k)∑

h∈KB ,h6=j ΘBL,h(τ)PBL,j(fBL,h(τ)) +N
,

(27)
where ΘBL,h is a binary RV indicating whether the backhaul
of h is active on τ , i.e., P (ΘBL,h = 1) = ρBL,h; PBL,j(s) is
the power received by eNB j from a RN located in s; sRN,j,k
indicates the location of RN k served by eNB j and fBL,h(τ)
yields the location of the RN scheduled by h for backhaul
transmission on τ .

During each RB τ a RN k in cell j can be sched-
uled for uplink transmission with probability ps(j, k) =
ρ̃BL,j,k∑
t ρ̃BL,j,t

, where ρ̃BL,j,t = (ω̄Φt/(βRBL,j,t)). Let T = |KB |
denote the total number of cells in our network, and
ij(τ), j ∈ KB , ij(τ) ∈ {0 · · ·nRN} denote the index of
the RN scheduled on the backhaul of eNB j on RB τ ,
where ij(τ) = 0 means that no RN has been scheduled
for transmission. Now, assuming that backhaul scheduling
decisions in a given cell do not depend on those taken in
other cells, we have that the probability of having a given
set {i1(τ), · · · iT (τ)} of scheduled RNs on RB τ is equal to

P(fBL,1(τ) = sRN,1,i1 , · · · , fBL,T (τ) = sRN,T,iT ) =∏
j

ps(j, ij(τ)). (28)

There are (nRN + 1)T possible scheduling combinations in
all cells. We assign an index δ, δ = {1 · · · (nRN+1)T } to each
combination, and denote V(δ) =

∏
j ps(j, ij(δ)). Finally, we

apply the law of total probability to obtain

RBL,j,k =
1∑(nRN+1)T

δ=1 V(δ) 1

C

(
PBL,j(sRN,j,k)∑

h∈KB,h6=j
PBL,j(sRN,h,ih(δ))+N

) ,
(29)

where we assume PBL,j(sRN,h,0) = 0.

APPENDIX E
SOME PROPERTIES OF GIBBS DISTRIBUTIONS FOR
PENALIZED ENERGIES

The purpose of this Appendix is to give a hint to the ”good”
convergence of a SA process when an increasing exterior
penalty such as (18) is added in the global energy, coupled
with an adequate SA temperature scheme. Consider such an
augmented energy:

F(x) = U(x) + µ Φ(x), (30)

Φ(x) = 1lDc(x)>Dmax

Π(x)

Dmax

(Dc(x)−Dmax) (31)

with for instance µ = µ(m) = α(m− 1) ≥ 0. We say that Φ
is a penalty if the set of its minimizers

Ω∗ = { x ∈ Ω s.t. Φ(x) = Φ∗ = min
y∈Ω

Φ(y) } (32)

is exactly the feasible subspace Ω̃ (this holds for (18)). Now
let us in general define the following set of ”iso-constrained”

subspaces: ε ∈ R 7→ Ωε = {x ∈ Ω s.t. Φ(x) = ε}, and
consider the exponential distribution given in (16) (see also
[46]). For any value of ε such that Ωε 6= ∅, one has:

∀x, y ∈ Ωε,
P (X = y)

P (X = x)
=

exp−F(y)

exp−F(x)

=
exp− [ U(y) + µ Φ(y) ]

exp− [ U(x) + µ Φ(x) ]

=
exp−U(y)

exp−U(x)
. (33)

So one can safely write in such an iso-constrained subspace:

P (X = x | x ∈ Ωε) =
exp−U(x)∑

y∈Ωε
exp−U(y)

. (34)

which is also an exponential distribution.
Two key points are now at stake in view of SA purposes

[46], [47]:

• First, as µ → +∞ (µ is similar to an inverse
temperature associated to the constraint Φ(x)), the
global distribution (16) becomes concentrated on
the subspace Ω∗ defined in (32) while keeping the
exponential form (34). The proof is classical: one can
re-write (16) as

P (X = x) =
exp− [ U(x) + µ Φ(x) ]∑

y∈Ω exp− [ U(y) + µ Φ(y) ]

=
exp− [ U(x) + µ (Φ(x)− Φ∗) ]∑

y∈Ω exp− [ U(y) + µ (Φ(y)− Φ∗) ]

Now, either Φ(x) > Φ∗ and exp(− µ (Φ(x) −
Φ∗))→ 0 when µ → +∞, or Φ(x) = Φ∗ and in
this case, exp(− µ (Φ(x)− Φ∗)) = 1 ∀µ.

• Then, consider distribution (16) with a temperature
parameter T > 0. It can be written as:

PT (X = x) =
exp−[

U(x) + µ Φ(x)

T
]∑

y∈Ω exp−[
U(y) + µ Φ(y)

T
]

=
exp−[

(U(x)− U∗)
T

+
µ

T
(Φ(x)− Φ∗) ]∑

y∈Ω exp−[
(U(y)− U∗)

T
+
µ

T
(Φ(y)− Φ∗) ]

,

where U∗ is the minimum of value of ob-
jective function U(.) on Ω∗. Now, if both
T → 0+ and µ → +∞ s.t. µ′ =

µ

T
∼

logm (new inverse temperature), a similar analysis
as before, now in two steps shows that for the
penalty case where Ω∗ = Ω̃, the distribution of
interest PT (.) concentrates on those configurations
with minimal energy U∗ on feasible subspace Ω̃ (see
rigorous proof in [46], [47]).
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