
1

Training-Based Antenna Selection for PER
Minimization: A POMDP Approach

Sinchu Padmanabhan, Reuben George Stephen, Chandra R. Murthy, and Marceau Coupechoux

Abstract—This paper considers the problem of receive antenna
selection (AS) in a multiple antenna communication system
having a single radio frequency (RF) chain. The AS decisions
are based on noisy channel estimates obtained using known
pilot symbols embedded in the data packets. The goal here is to
minimize the average packet error rate (PER), by exploitingthe
known temporal correlation of the channel. As the underlying
channels are only partially observed using the pilot symbols,
the problem of AS for PER minimization is cast into a par-
tially observable Markov decision process (POMDP) framework.
Under mild assumptions, the optimality of a myopic policy is
established for the 2-state channel case. Also, two heuristic
AS schemes are proposed based on a weighted combination of
the estimated channel states on the different antennas. These
schemes utilize the continuous-valued received pilot symbols to
make the AS decisions, and are shown to offer performance
comparable to the POMDP approach, which requires one to
quantize the channel and observations to a finite set of states. The
performance improvement offered by the POMDP solution and
the proposed heuristic solutions relative to existing AS training-
based approaches is illustrated using Monte Carlo simulations.
Index Terms—Antenna selection, POMDP, myopic policy, finite
state Markov chain

I. I NTRODUCTION

Antenna selection (AS) is a popular technique for reducing
the hardware complexity and cost of a multiple input multiple
output system [2]–[6]. In AS, since only a subset of the
available antennas is used for transmission/reception, only a
small number of the relatively more expensive radio frequency
(RF) chains need to be deployed. AS is supported by wireless
standards such as IEEE 802.11n [7] and 3GPP Long Term
Evolution (LTE) [8]. AS can be employed at the transmitter
as well as at the receiver. The focus of this work is on AS for
a multiple-antenna receiver with a single RF chain, with the
goal of exploiting the knowledge of the temporal correlation in
the wireless channel to perform the optimal tradeoff between
exploring for new antennas and exploiting the best antenna
based on current knowledge.

There has been an enormous amount of research in the area
of antenna selection for MIMO systems in the recent years; we
refer the interested reader to [2] and [3] for excellent tutorial
surveys of the area. Some of the early work assumed perfect
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channel state information (CSI) at the receiver [9]–[14]. In
practice, the channel state is typically estimated using a small
number of pilot symbols embedded in the packet, which leads
to imperfect knowledge of CSI at the receiver. The impact of
imperfect CSI on the performance of AS is studied in [15]
and [16], and it is shown that, surprisingly, the diversity order
achievable with perfect CSI is still preserved. Other studies
related to AS include AS with transmit beamforming [17],
AS with analog power estimators [18], and AS with spatial
correlation between antennas [19], [20]. Another approachthat
has been explored in the literature is the use of reinforcement
learning techniques (see, e.g., [21]–[23]). Here, the goalis
to minimize the regret compared to a policy that always
chooses the statistically best antenna. These are applicable
when the channel statistics are not known and the policy
must be determined solely from the past AS decisions and
resulting outcomes. In this work, we focus on receive antenna
selection in the spatially uncorrelated channel case, but we
will also briefly indicate how the approach easily allows oneto
incorporate the effect of spatial correlation between antennas.

Typically, in order to perform AS, the receiver first requests
for an AS training phase, following which the transmitter sends
out L ≥ 1 sets ofN ≥ 1 known training symbols to the
receiver [24], whereN is the number of receive antennas.
The time duration between consecutive pilots isTp , ηTs,
whereTs is the pilot symbol duration andη ≥ 2 [25].1 Thus,
the total AS training duration isηNLTs. The AS training
phase is repeated whenever the channel estimates get outdated,
imposing a non-trivial overhead on the AS based system. In
[26], the authors consider the receive AS based on noisy
and outdated channel estimates obtained from the AS training
phase. They propose scheme for weighting the channel gain
estimates that minimizes the symbol error probability (SEP).
The channel state estimates obtained during the AS training
phase are used for both AS and data decoding purposes.

In many practical systems, there are additional pilots in data
phase also, viz. the demodulation reference signals (DM RS),
which may be utilized for data decoding [8]. In [25], Saleh
et al. take this into account in data decoding, and propose an
algorithm for AS, that maximizes the post-processing SNR. A
channel prediction method based on Slepian basis expansion,
utilizing the CSI from the training phase, is proposed for
AS. After selection, estimation of the channel on the selected
antenna is done using the DM RS available in the data phase,
again based on Slepian basis expansion. These estimates are

1The pilot symbols are usually embedded in a training packet with physical
layer header [26], and are hence spaced several symbols apart.
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used for data decoding. However, the CSI obtained from the
data phase is not used for making future AS decisions. In
[27], AS is formulated in a decision theoretic framework
with the aim of maximizing the throughput. A training based
selection is assumed, with each frame consisting of an AS
training phase, a data packet and an error check information.
Information obtained from the error check observation is used
in the future AS decisions. However, the channel is assumed
to remain constant for the entire frame duration, which may
not hold when the channel is fast-varying. Also, the structure
of the optimal policy is not analyzed.

In the context of the above, it is pertinent to consider the
use of DM RS for AS also, thereby alleviating the dependence
of the AS process on the lengthy training phase. As the
channel is correlated in time, and since each packet reveals
new information about the channel state only on the selected
antenna, the AS decisions affect both the immediate packet
reception andfuture packet receptions. The AS can thus be
viewed as a form of control, as it determines the accuracy
of the CSI available at the receiver on the different antennas.
Hence, we formulate the AS problem in a decision theoretic
framework, where the problem is to sequentially choose an
antenna to receive the current packet, based on the history of
past actions and observations, with the goal of maximizing a
notion of expected long term reward.

The fundamental trade off involved here is as follows.
Sticking to a given antenna for as long as its channelseemingly
good is not optimal in general, since we lose track of the
channel on the other antennas, some of which might be in a
better state. On the other hand, frequent switching between
antennas would result in not fully utilizing the ones that are
in good channel states. An optimal policy is the one which
balances between the two and achieves the maximum expected
long term reward. Now, at any given time, the true states
of antennas are not fully revealed to the receiver, i.e., the
states are partially observable through the DM RS. Since the
action taken by the receiver controls the observability, the
problem is cast as a partially observable Markov decision
process (POMDP) [28]–[30]. The goal is to obtain an optimal
policy for minimizing the average packet error rate (PER).

There are two kinds of POMDP formulations: the finite
horizon POMDP and the infinite horizon POMDP. In the
former approach, the goal is to minimize the average PER
over a fixed (and typically, small) number of packets that
are to be received. The infinite horizon POMDP assumes
that the data stream is very long, and is therefore convenient
for optimizing a long-term reward. In both cases, the CSI
is estimated on the selected antenna upon reception of each
packet, and AS based on the optimal POMDP solution strikes
the right balance between exploration (to find better antennas)
and exploitation (of the best antenna in hand). Our POMDP
formulation in this paper is valid both the finite and infinite
horizon cases. The SARSOP algorithm from the Approximate
POMDP Planning Toolkit [31] used to solve the infinite
horizon POMDP in this paper can also be used to solve a finite
horizon POMDP scenario, by adjusting the stopping criterion.
We have, however, opted for the infinite horizon model in the
sequel for the following reasons: 1) the long data stream is

realistic if we compare a typical file size to the number of bits
carried by an individual packet; 2) it is needed to know the
time horizon to solve a finite horizon POMDP, an information
that is not available at the physical layer in practice; 3) the
finite horizon assumption results in non stationary optimal
policies (i.e. policies that depend on the time index), which
are more difficult to implement in practice. On the other hand,
the optimal policy for an infinite horizon problem is known
to be stationary [30].

The contributions of our work are as follows. We cast the
problem as a POMDP, which allows us to leverage a host of
existing approaches to find an optimal AS scheme. Moreover,
our proposed approach obviates the need for an expensive AS
training phase at the start of each data packet, unlike most
of the past work on AS. On the other hand, our method
can also exploit an AS training phase, when present. Hence,
it can be employed in systems designed based on previous
AS approaches as well. For the case when the number of
states per antenna is two, with perfect CSI on the selected
antenna and positively correlated2 channels, we show that
optimal policy for the AS problem is myopic in nature. An
optimal policy, in general, maximizes thelong term reward,
while a myopic policy is designed to maximize only the
immediate reward, ignoring the future rewards. In our set-
up, a myopic policy selects the antenna by only considering
the probability of correctly receiving the current packet.The
myopic policy is simpler to compute as well as to implement,
compared to a general POMDP solution. We evaluate the
average PER performance of different AS policies via Monte
Carlo simulations. The results show that, even with imperfect
CSI on all antennas and forN > 2, the myopic policy offers
performance comparable to the POMDP solution. Inspired by
this result on the nature of the optimal policy, we propose two
heuristic schemes for AS and evaluate their performance. The
performance comparison of these schemes, which are based
on continuous-valued channel gain, with that of the finite state
Markov chain (FSMC)-based POMDP solution gives further
insights into the nature of the POMDP solution.

We also compare our results with the weighting scheme
proposed in [26], which is based on AS training. Another
scheme which picks the antenna with the highest channel gain
in the AS training phase for receiving the subsequent packets
is also evaluated. We show the proposed scheme outperforms
both these schemes. The results highlight the advantage of
utilizing the DM RS information for data decoding as well as
for AS purposes, in terms optimizing the PER performance.
For example, in the case of PER vs. SNR, the PER of the
existing schemes exhibits an error floor, whereas, the PER of
the proposed scheme decreases monotonically with SNR.

The rest of the paper is organized as follows. In Sec. II,
we describe the system model. We develop the POMDP
formulation of the AS problem in Sec. III. We establish the
optimality of the myopic policy under certain conditions in
Sec. IV. We present a discussion about the relative merits of
different policies, in terms of performance and computational

2A 2-state channel is said to be positively correlated if the state transition
probabilities of the channel are such that the transition tothe same state has
a higher probability than that to the other state.
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Fig. 1. AS with CSI feedback from packet reception.

complexity, in Sec. V. Monte Carlo simulation results are
presented in Sec. VI, and concluding remarks are offered in
Sec. VII. Proofs of some of the lemmas and other claims are
provided in the appendices.

II. SYSTEM MODEL

We consider system where a single antenna transmitter
is communicating with a receiver equipped withN antenna
elements (AE) and one RF chain. The communication occurs
in the form of data packets of durationTpkt. Each packet has
D data symbols, denoted bydj , j = 1, 2, . . . , D and a DM
RS, denoted byp. The goal at the receiver is to select the best
out of theN AEs to receive each packet, for minimizing the
PER. The channels from the transmit antenna to the receive
antennas are modeled as frequency flat, Rayleigh faded and
independent across the AEs. The time evolution of the channel
follows the Jakes’ spectrum [32], [33], with the receiver having
the knowledge of the doppler frequency. For simplicity, we
assume that the channel remains constant for the duration ofa
packet. Thus, in this model, the system operates in discrete
time steps of durationTpkt. A solid state switch achieves
the connection between the selected AE and the RF chain,
which has switching speeds on the order of a few hundreds of
nanoseconds [25]. Hence, the switching delays are negligible.

The sequence of operations involved in the AS process
is depicted in Figure 1. ASi denotes the AS decision for
selecting the AE for theith packet, pkti. At the beginning
of each packet, the channels make a state transition. The AE
selection is based on the CSI available up to and including
the previous packet. The DM RS embedded in the packet
yields new information on the channel state of the AE that
receives the packet. This information is used to decode the
packet as well as to update the CSI of the selected AE. With
the additional CSI gained in the current packet and the history
of decisions and observations, a new selection decision is made
for the next packet, and the process continues.

The modeling of the state process is crucial to the solvability
of the resulting POMDP. In particular, since the channel
state is continuous-valued, a direct formulation of the AS
problem in a POMDP framework leads to a continuous state
POMDP. On the other hand, quantizing the channel to a finite
number of states and using a state transition probability matrix

derived from the continuous-valued channel dynamics leads
to a discrete state POMDP. There are three main approaches
to solving continuous POMDPs: Perseus [34], Monte Carlo
POMDP [35] and Monte Carlo value iteration [36]. References
[34] and [35] assume that belief value functions are Gaussian
or a mixture of Gaussian functions, an assumption which is
not supported in our case. Reference [36] uses a particle based
representation of the belief but assumes discrete observations,
which is also not valid in our case. In contrast, an algorithm
like SARSOP is known to solve discrete state POMDPs
with up to 1, 00, 000 states in a reasonable time, which is
sufficient for our purposes. Thus, we propose to pose the
problem as a discrete state POMDP. Accordingly, we model
the Rayleigh faded time correlated channels as a finite state
Markov chain (FSMC) [37], [38], to partition the received
SNR on the AEs. Finite State Markov Channel (FSMC) is
a popular model for a fading channel, and is known to be
accurate for packet-level studies. In this work, we use the
popular FSMC model proposed by Zhang and Kassam [39] to
partition the instantaneous signal-to-noise ratios (SNRs) on the
receive AEs. LetG = {1, 2, . . . , κ} denote the state space of
the FSMC channel for a given normalized Doppler frequency
fmTpkt, where fm is the maximum Doppler frequency. Let
{γ1, γ2, . . . , γκ+1} denote the SNR thresholds corresponding
to the states inG, determined following the procedure in [39].
For a Rayleigh fading channel following the Jakes’ spectrum
for time variation, the state transition probability matrix of the
FSMC as a function of the normalized Doppler frequency is
known [39].

We emphasize that, in this work, the instantaneous SNR is
discretized into a finite number of states only for the purpose of
defining the state space, obtaining the corresponding statetran-
sition probabilities, and solving the POMDP. Our formulation
can be directly applied to other channel models like Rician or
Nakagami fading. The FSMC modeling of these channels are
discussed in [40] and [41]. We also note that the formulation
directly extends to frequency selective channels also, by using
the so-called exponential effective SNR mapping (EESM)
metric to convert the frequency-selective wideband channel
first into a continuous-valued scalar channel [42], applying
one of the above techniques to discretize the channel into a
finite set of states. Once the state transition probabilities and
the packet error rates for the different states are obtained, the
framework developed in this paper can be used to find an
optimal AS scheme.

For a POMDP, the statistical information of the system
at the time stept, given the entire history of actions and
observations, can be captured in abelief vector given by
b(t) = {bS(t)}S∈S , whereS is the state space andbS(t) is
the conditional probability, given the history, that the system is
in stateS at timet. The dynamic behavior of the belief vector
is thus a discrete-time continuous-state Markov process [43].

A policy for a POMDP is a prescription of an action
corresponding to the current belief vector. Each policy has
an expected long term reward associated with it. The optimal
policy is one which has the maximum expected long term
reward. Once the components of the POMDP are defined, a
POMDP solver can be used to find the optimal policy for
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the problem. At timet, let i denote the AE selected by the
policy, and lethi(t) be the complex valued channel gain of
the selected AE. Then, the instantaneous SNR at the receiver
is given byγ(i) = |hi(t)|

2γ0, whereγ0 is the average per-
symbol SNR. Ifγj ≤ γ(i) < γj+1, then the AE is said to be
in statej. The received DM RS on the selected AE, dropping
the time index, is given byy = hip+n, wherep is the known
pilot symbol andn is the additive white Gaussian noise with
varianceσ2

n. The maximum likelihood (ML) estimate of the
channel gain iŝhi = p∗

|p|2 y = hi + e, where e is the noise

term, given by p∗

|p|2n. The estimated channel gain̂hi is used
to decode the packet, and also as additional information for
selecting the AE for receiving the next packet. The latter is
accomplished by updating the belief vector. The optimal policy
then maps the updated belief vector to the index of AE to be
selected for receiving the next packet. In the next section,
we develop the POMDP formulation of the AS problem for
minimizing the average PER.

III. POMDP FORMULATION

The POMDP formulation of the AS problem consists of the
following components.

1) State Space:The state space of the system is represented
as S , {1, 2, . . . , κ}N . The ith state is given by the tuple
Si ∈ S, whose entries specify the channel states on each of the
N antennas. When the system makes a transition from state
Si to stateSj , each channel has a corresponding transition
associated with it. Since the channels are assumed to be
independent, the transition probability Pr(Sj |Si) is given by
the product of the state transition probabilities associated with
each channel.

2) Action Space: The action space is given byA ,

{1, 2, . . . , N} where theith action corresponds to selecting
the ith antenna for packet reception.

3) Observation Space:The observation on selecting an
antenna is the received signal corresponding to the DM RS in
the packet, which provides information on the channel state
of that antenna. Since the CSI from the pilot is continuous-
valued, we need to discretize it into states using the thresholds
given by the FSMC model. Then, the observation space is
O = {1, 2, . . . , κ}. Let the observation beo ∈ O, when the
state of the system isS and the action taken isa. Let S(a)
denote the state of the selected AE when the system state isS.
Then the observation probabilityO(S, a, o) is the probability
of observing stateo on the selected AE, given its true state,
S(a). The derivation of this probability is given in [1]. It varies
with the pilot SNR, and in the case of perfect CSI on the
selected AE,O(S, a, o) = 1 if o = S(a), the true state of the
selected AE, andO(S, a, o) = 0 otherwise.

4) Belief Vector:At each time stept, the belief vectorb(t)
captures the statistical information of the system. We start
with an initial belief vector,b(1) and update it at each state
transition and with each observation. In a training based AS,
we can utilize the information from the training phase to obtain
an initial belief state. When there is no AS training phase,
we can initialize the belief states as the stationary probability
of the Markov channel, which is a usual practice when no

prior probabilities are available. The AS training phase helps
in getting a good estimate of the initial belief state, which
speeds up the convergence of the policy. This is beneficial
when the channel is slowly varying. On the other hand, for
fast varying channels, the initial estimate from the AS training
phase is less important. In this case, more frequent DM RS
pilots are required for tracking the time-varying channel.

5) Reward: Since we are interested in PER minimization,
we define our reward as unity when the packet is correctly
received, and zero otherwise. Thus, maximizing the long term
reward is equivalent to minimizing the expected average PER.

The expected immediate reward associated with the action
a ∈ A when the system state isS is given by

̺(a, S) =

κ
∑

j=1

Pr(o = j|S(a))Pcor(o = j, S(a)), (1)

whereS(a) denotes the true state of the selected antenna ando

denotes the observation on the selected antenna.Pcor(o, S(a))
gives the probability of correctly receiving the packet when
the true state isS(a) and the observed state iso. It should
be noted that in our case the reward depends on both the
true state and the observed state unlike a standard POMDP
formulation. The DM RS observation affects the reward as it
is used for decoding the data packet. A closed form expression
for Pcor(o, S(a)), when both observationo and S(a) are
discretized values, is analytically intractable. This is because
the performance depends on the decoding algorithm used
for packet reception, which makes it difficult to come up
with a general, closed form expression for the PER under
channel mismatch. Moreover, our focus in this paper is on
showing how a decision theoretic formulation can be applied
to solving the problem of receive antenna selection, ratherthan
on analyzing the PER under channel estimation errors. Hence,
Pcor(o, S(a)) is calculated experimentally via simulations. The
parameters for this simulation will be explained in SectionVI.
The probability of correctly receiving the packet is calculated
for all pairs of true and observation states.

The expected immediate reward can now be expressed as a
function of the belief state,b, as follows:

R(a,b) =
∑

S∈S

bS̺(a, S), (2)

wherebS is the component of the belief vectorb correspond-
ing to the stateS.

6) Objective and the Optimal Policy:The objective is to
minimize the expected average PER, over an infinite horizon.
The averaging is done in a discounted sense, i.e., the future
rewards are discounted by a factorβ. A policy is a mapping
from the set of all belief vectors to the action space, i.e., a
policy has an action corresponding to a given belief vector.
There is a reward associated with executing a policy. Let
Jπ
β (b) denote the expected total discounted reward associated

with a policyπ starting from time stept = 1 and belief vector
b, with the discount factor beingβ. The optimal policy solves
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the following optimization problem

max
π

Jπ
β (b) = max

π
E

[

∞
∑

t=1

βt−1R(π(b(t)),b(t))|b(1) = b

]

,

(3)
where 0 ≤ β < 1, and R(π(b(t)),b(t)) is the reward
collected under belief stateb(t) when the AEπ(b(t)) is
selected for packet reception.

We have thus formulated the AS problem as a POMDP.
There are several tools available for solving POMDPs [44]–
[46]. However, solving the POMDP can quickly become
computationally burdensome, as the number of states of the
system under consideration becomes large. On the other hand,
using a smaller number of states compromises on the accuracy
of the FSMC model of the underlying continuous-valued
channel. A usual practice, in this scenario, is to explore the
effectiveness of a simpler but possibly suboptimal policy for
AS. A myopic policy is one such policy. In the next section, we
show that under the mild assumption of positively correlated
channels and perfect CSI on the selected AE, for the 2-states-
per-antenna model, the myopic policy is indeed optimal for
the AS POMDP problem. Note that, although the 2-state
channel model might appear overly simplistic, it retains the
essence of the time-variations of the wireless channel, and
therefore provides useful intuitions on how to design near-
optimal policies for channel models with number of states
greater than two. As will be demonstrated through simulations,
the myopic policy continues to remain nearly optimal even
when the channel is modeled with more than2 states.

IV. OPTIMALITY OF THE MYOPIC POLICY

A myopic policy is one which maximizes the immediate
reward alone, rather than the long term reward. It is oblivious
to the impact of current action on future rewards. In this
section, for a 2-states channel with perfect CSI on the selected
AE and positively correlated channels, we show that the
optimal policy is myopic. A pictorial representation of the
2-states channel model with state transition probabilities, is
given in Fig. 2. A positively correlated channel is one where
the transition probabilities satisfyp11 ≥ p01. This means that
in the next time step, the channel state has a higher probability
to remain in the present state rather than to switch to the other
state. The FSMC model yields a positively correlated channel
for normalized Doppler frequencies as high as0.2. Hence, the
channels are positively correlated for all practical purposes. We
present the proof of the optimality of the myopic policy for the
finite horizon case. However, it can be extended to the infinite
horizon case using standard techniques [47]. Unfortunately, the
extension of this result to channels with more than 2 states or
to the case with imperfect channel estimation does not seem
to be straightforward.

The two states per antenna model allows us to simplify
the formulation as follows. We redefine the belief vector at
time t as Ω(t) , [ω1(t), ω2(t), . . . , ωN (t)], whereωi(t) ,

Pr(si(t) = 1|Past actions and observations), i.e., the condi-
tional probability that the channeli is in the good state
(denoted bysi(t) = 1) at time stept, given all past actions and
observations. Note thatΩ(t) differs from b(t), since, in the

goodbad p11

p01

p10

p00
(1)(0)

Fig. 2. 2-state model of the channel.

former, the belief is on each antenna, whereas in the latter,the
belief is on the joint state of theN antennas. Leta(t) denote
the antenna selected at timet. Once an AEa(t) is selected, its
true channel statesa(t) is revealed by the DM RS. With the
new observation on the selected antenna, using Bayes’ rule,
we update the belief vector as follows:

ωi(t+ 1) =















p11 if a(t) = i, sa(t) = 1,

p01 if a(t) = i, sa(t) = 0,

τ(ωi(t)) if a(t) 6= i,

(4)

whereτ(ωi(t)) = ωi(t)p11 + (1 − ωi(t))p01 is the one-step
belief update when antennai is not selected.

We seek to maximize the total expected discounted reward
over a horizon ofT . That is, we wish to solve

π∗ = argmax
π

Eπ

[

T
∑

t=1

βt−1R(πt(Ω(t)),Ω(t)) | Ω(1)

]

. (5)

Any admissible policy can be written asπ = [π1, π2, . . . , πT ],
whereπt mapsΩ(t) to an actiona(t); t = 1, 2, . . . , T . Here,
policies are indexed byt since the optimal policy for a finite
horizon problem is, in general, non-stationary.

We define thevalue functionVt(Ω(t)) of the optimal policy
at time t as

VT (Ω) = max
a=1,...,N

E[R(a,Ω)] (6)

Vt(Ω) = max
a=1,...,N

E [R(a,Ω) + βVt+1(T (Ω))] (7)

= max
a=1,...,N

E[R(a,Ω)]

+ βωa(t+ 1)Vt+1(T (Ω|S(a) = 1))

+ β(1− ωa(t+ 1))Vt+1(T (Ω|S(a) = 0)) (8)

which is the expected sum reward gained, starting in belief
vector Ω(t), from time t to T . Here, T (·) is the one-step
update operator of the belief vector, defined as in (4). Also,
notational simplicity, we have dropped the time index inΩ.

Let Pc(s) denote the probability of correctly receiving a
packet when the channel state iss ∈ {0, 1}. Then, the expected
immediate reward collected is given by

R(a,Ω) = ωaPc(1) + (1 − ωa)Pc(0) , f(ωa). (9)

Since state1 corresponds to a higher channel gain than
state 0, the associated probability of correctly receiving a
packet is higher for state1, and it is reasonable to assume
Pc(1) ≥ Pc(0). Hence,f(ωa) increases linearly withωa. A
myopic policy chooses that action which maximizesf(ωa).
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Due to the linearity off(ωa), this is equivalent to choosing the
antenna with the highest belief state. Now, we define a pseudo
value functionWt(Ω), t = 1, 2, . . . , T , as follows [48]. We
let WT (Ω) = f(ωN ). For t < T , we let

Wt(Ω) = f(ωN) + β [ωNWt+1(τ(ω1), . . . , τ(ωN−1), p11)

+(1− ωN )Wt+1(p01, τ(ω1), . . . , τ(ωN−1))] . (10)

A few observations on the properties of this pseudo value
function are listed below.

1) Wt(Ω(t)) corresponds to the expected total discounted
reward of a policy which chooses, at timet, the AE
corresponding to the last entry inΩ(t). If a 1 is observed
on the selected AE (that is, the channel is observed to
be in the good state), then it is selected for receiving
the subsequent packets until a0 is observed on it. As
long as a1 is observed, the next belief vectorΩ(t+ 1)
remains ordered such that the belief state of the selected
AE is the last entry of the vector, i.e., it is the channel
to be selected for receiving the next packet also. If the
observation is0 (that is, the channel is observed to be in
a bad state), then the AE is moved to be the first entry
of the vector,Ω(t+1). Correspondingly, it becomes the
last one to get selected. The ordering of the unobserved
AEs are retained. This can be easily verified by noting
the linearity ofτ(·) and the assumptionp11 ≥ p01.

2) When the elements inΩ(t) are ordered such that
ω1 ≤ ω2 ≤ . . . ≤ ωN , Wt(Ω(t)) is the expected total
discounted reward obtained by following the myopic
policy from time t to T . This is because, at any time
from t to T , the entries in the vectorΩ(t) remain sorted
in increasing order due to the monotonicity ofτ(·).
Since the AE corresponding to the last entry is always
selected, which has the highest belief state, the policy
implemented by selecting the antenna corresponding to
the last entry inΩ turns out to be the myopic policy.

3) It can be shown that the followingdecomposability
property holds for alll ∈ {1, 2, . . . , N}. The proof is
by induction, and is relegated to Appendix A.

Wt(ω1, . . . , ωl, . . . , ωN )

= ωlWt(ω1, . . . , 1, . . . , ωN)

+ (1− ωl)Wt(ω1, . . . , 0, . . . , ωN ). (11)

We can further extend the above result to show that

Wt(ω1, . . . , y, x, . . . , ωn)−Wt(ω1, . . . , x, y, . . . , ωn)

= (x− y)[Wt(ω1, . . . , 0, 1, . . . , ωn)

−Wt(ω1, . . . , 1, 0, . . . , ωn)]. (12)

We will use the above result in the proof of Lemma 1 in the
sequel. A necessary and sufficient condition for the optimality
of the myopic policy is given in Lemma 2 of [47]. It says, to
show the optimality of the myopic policy at timet, given its
optimality at t+ 1, . . . , T , it suffices to show that

Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωN , ωi) ≤ Wt(ω1, . . . , ωN ).
(13)

for all ω1 ≤ . . . ≤ ωi ≤ . . . ≤ ωN .

The condition given above essentially requires that selecting
the AE corresponding to the last entry in the vector,Ω(t),
followed by myopic selection be better than selecting any other
AE followed by myopic selection. With the assumption of
optimality of myopic policy from timet + 1 onwards, this
condition ensures that the myopic policy is optimal for time
t also. In order to prove that the above condition holds for
the AS POMDP problem, we first prove the following. The
pseudo value function,Wt(Ω(t)), does decrease in value, if
we switch the order of two neighbouring AEsi and i+ 1 so
as to makeωi+1 ≥ ωi . This is established in Lemma 1. Let
∆ , f(1)− f(0) = Pc(1)− Pc(0). SincePc(1) ≥ Pc(0), we
have∆ ≥ 0.

Lemma 1. For ω1 ≤ ω2 ≤ . . . ≤ ωN , the following
inequalities hold for allt = 1, 2, . . . , T , whenp11 ≥ p01:

1) ∆ +Wt(ω2, . . . , ωN , ω1) ≥ Wt(ω1, . . . , ωN ) (14)

2) Wt(ω1, . . . , ωl, y, x, . . . , ωN )

≥ Wt(ω1, . . . , ωl, x, y, . . . , ωN) (15)

where x ≥ y, 0 ≤ l ≤ N − 2, and l = 0 implies
Wt(y, x, ω3, . . . , ωN ) ≥ Wt(x, y, ω3, . . . , ωN ).

We prove this lemma using a sample path argument in
Appendix B. Next, we state and prove the theorem on the
optimality of myopic policy.

Theorem 1. The myopic policy is optimal for the problem
stated in (6), fort = 1, 2, . . . , T , and ∀Ω = [ω1, . . . , ωN ] ∈
[0, 1]N under the assumption thatp11 ≥ p01.

Proof: The proof is by induction. At timet = T , the greedy
policy is obviously optimal. Assuming it is optimal for times
t+1, t+2, . . . , T , to show the optimality at timet, by Lemma
2 of [47], it suffices to show

Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωN , ωi) ≤ Wt(ω1, . . . , ωN).
(16)

By applying (15) repeatedly to the above equation

Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωN , ωi)

≤ Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωi, ωN )

≤ Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωi, ωN−1, ωN)

...

≤ Wt(ω1, . . . , ωN). (17)

This completes the proof of Theorem 1.
The myopic policy explained above has an interesting

structure to it. It sticks with an antenna if a 1 is observed
on it, otherwise discards that antenna and picks the one with
the highest probability to be in state 1. The optimality of such
a policy is intuitive. There are only two states and if an antenna
in state 1, it is most probable to stay in state 1 in the next time
step due to the assumptionp11 ≥ p01. On the other hand, if
the antenna is in state 0, it has the lowest probability to be in
state 1 in the next time step. Hence, by following the myopic
policy, the antenna with the highest probability to be in state 1
is selected for receiving the next packet. However, in a general
set up with more number of states per antenna, the optimal
policy is not straight-forward.
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Fig. 3. As training phase followed by the data phase.

V. D ISCUSSION

We now briefly discuss the relative merits and demerits
of the proposed POMDP approach compared to the existing
approaches from the literature. We also present two new
heuristic schemes for AS inspired by the existing approaches
and the proposed POMDP based approach. Finally, we present
a computational complexity analysis of the various schemes.

A. Existing Schemes

The existing schemes for AS are generally based on the use
of an AS training phase, shown pictorially in Fig. 3. The AS
training phase comprises ofN pilot symbolsp1, p2, . . . , pN .
The pilot symbols are followed by several data packets; we let
di denote theith data packet. The receiver obtains estimates
of the channel gains of each AE from the pilot symbols in the
training phase. These estimates are used in selecting AEs inthe
data phase. It is assumed that the receiver requests the trans-
mitter for a training phase, when the resulting PER is below
someacceptablelevel [24]. In subsection VI-B, we compare
the performance of the POMDP solution with two approaches
from the literature: the weighting scheme proposed in [26]
and theMax picking scheme. In both these schemes, the
channel gain estimates obtained from the training phase are
used for AS as well as for data decoding, i.e., the additional
CSI obtained from the DM RS is not exploited. In theMax
picking scheme, the channel gain estimates of the AEs
from the AS training phase are compared, and the AE with
the highest estimate is selected for receiving the packets in
the data phase. The scheme proposed in [26]is to weigh the
estimates from the AS training phase, and select the AE with
the highest weighted estimate to receive a symbol. The weights
are chosen to minimize the symbol error probability at the
receiver, accounting for the fact that the channel estimates on
different antennas are outdated by different amounts of time.
In order to compare the PER performance of this scheme with
that of the POMDP solution, a per-packet selection is done in
this paper. Both the above mentioned schemes depend solely
on the estimates from the training phase for selecting AEs.
We compare their performance with that of our scheme which
utilizes the DM RS information in AS decision making. We
will show that, by taking the information obtained through the
DM RS into account, we are able to significantly improve the
AS performance. To facilitate comparison, we consider a given
packet index, e.g., the10th packet after the AS training phase,
and illustrate the effect of utilizing the DM RS, as opposed to
using only the AS training phase, on the PER performance.

B. Heuristic schemes

In this subsection, we present two heuristic schemes for AS,
based on theMax picking and the weighting schemes, as

follows. In theMax picking scheme, once an AE is used
to receive a packet, we update the CSI of this AE with the
channel gain estimate obtained from the DM RS in the packet.
We compare this new estimate with the outdated estimates of
other AEs, while selecting AE for receiving the next packet.
Similarly, in the modified weighting scheme, the CSI of the
selected AE is updated using the DM RS information. For
selecting AE for the next packet, the weighting is done on
the updated estimate for the selected AE and the outdated
estimates of the rest of the AEs. The weight calculation takes
into account the delay in the estimates, in the same manner
as was done in the original scheme. In addition to this, the
channel gain estimate from the DM RS is used to decode the
data in the packet, for both the modified schemes.

Recall that the POMDP formulation requires the
continuous-valued channel gains to be discretized into
a finite number of states for the purpose of solving the
POMDP and determining the optimal policy. Due to this, the
information available from the received pilot symbols is not
fully utilized by the receiver, especially when the number
of states per antenna is small.3 This will be illustrated in
in the simulation results in Section VI, where we plot the
PER versus the normalized Doppler frequency. However,
the heuristic schemes proposed above based on the intuition
gleaned from the POMDP utilize the DM RS information
not only for data decoding but also for AS, and recover the
performance loss of the POMDP solution. In subsection VI-C,
we will show that the two heuristic schemes presented above
outperform the existing weighting and max picking schemes
described in the previous subsection.

C. Computational Complexity

In this subsection, we discuss the computational complexity
of the different AS schemes discussed above. We focus on
the complexity in using the policy suggested by the POMDP
planning, and not on the computational cost of solving the
POMDP. This is because the POMDP can be solved offline,
and only needs to be repeated when the channel statistics
change, i.e., only very rarely, compared to the AS process.

Let κ denote the number of states per antenna and letN

denote the number of antenna elements, as before. The total
number of channel states is then given byK = κN . We make
the following remarks about the complexity:

• SARSOP policy: The output of the SARSOP tool is a set
of vectors, denoted byΛ, which represents a piecewise-
linear approximation of the optimal value function. Each
vector is associated with an action. At each time step, the
inner product between these vectors and the current belief
vector is computed. The complexity of this computation is
|Λ|O(K). The optimal action is the one corresponding to
the vector inΛ is most correlated with the current belief

3A way to overcome the loss of optimality in quantizing the channel
into discrete states is to increase the number of states on each antenna;
however, this drives up the complexity of finding the optimalsolution. Also, a
limitation of the FSMC model in [39] is that it restricts the state transitions to
happen only between adjacent channel states, and this affects the optimality
of the policy vis-a-vis the behavior of the channel when the number of states
becomes large.
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vector. The complexity of finding the maximum among
|Λ| values isO(|Λ|). The last step of the algorithm is to
update the belief vector by multiplying it with the state
transition probability matrix. This incurs a complexity of
O(K2).

• Myopic policy: In this case, at each time step, the
immediate reward corresponding to each action is calcu-
lated. This involves computing the inner product between
current belief vector and the expected immediate reward
̺(a, S), which has a complexity ofNO(K). Then, we
find the maximum among theN inner product values, the
complexity beingO(N). The final step in the procedure
is to update the belief vector, similar to the SARSOP
policy, which has a complexity ofO(K2).

• Weighting scheme: This scheme involves multiplying the
channel gain estimates from the AS training phase with
the weight vector, incurring a complexity ofO(N). Note
that, as the weight vector computation can be performed
offline, its complexity is not included in this analysis.
Finally, we choose maximum from theseN weighted
gains. The complexity for this isO(N).

• Max picking: This schemes simply picks the maxi-
mum among theN channel gains obtained from the AS
training phase. This has a complexity ofO(N). All the
packets are received using the same antenna.

• Modified schemes: In the modified schemes, the channel
gain estimate of the selected antenna is updated using
the DM RS information. Its complexity is similar to the
corresponding schemes discussed above.

From the above discussion, we see that the POMDP based
solution has a higher complexity than the other schemes. The
complexity increases with the number of quantized states.
Between SARSOP policy and myopic policy, the former has
higher complexity as|Λ| is typically much greater thanK for
a “good” policy obtained from the SARSOP tool. Due to this,
the computational complexity of the SARSOP policy may not
scale well for large dimensional AS problems. On the other
hand, the myopic policy offers a good compromise between
complexity and performance, and would be the candidate of
choice as the number of antennas gets large, for example, in
massive MIMO systems.

VI. SIMULATION RESULTS

In this section, we present Monte Carlo simulation results
to support the analysis and discussion in the previous sections.

A. Simulation Setup

In order to evaluate the performance of the proposed
schemes and compare with existing training-based AS
schemes, we simulate an initial training phase, followed by
transmission of several data packets, as shown in Fig. 3. We
haveTp = Tpkt, and we assume that the channel stays constant
for the durationTpkt, for all the simulations. In case of the
POMDP, the information from the training phase is used to
compute the initial belief vector. Each packet consists of ten
data symbols and one DM RS. The data symbols are drawn
uniformly at random from an 8-PSK constellation, scaled by

the signal power. We assume that there areN = 4 AEs,
and that the noise at the receiver is AWGN. We fix the
normalized Doppler frequency is fixed atfmTpkt = 0.02. The
pilot symbols are transmitted at the same power as the data
symbols.

The channel is Rayleigh faded with time correlation dictated
by the Jakes’ spectrum, and is independent across AEs (see
a later subsection for a simulation result that incorporates
spatial correlation in the channel). We generate a large number
(10, 000) of time-correlated Rayleigh fading channel traces
generated using the algorithm given in [49]. For each trace,we
start with an AS training phase followed by data transmission
via packets. We perform receive AS using the different al-
gorithms, and collect the statistics of packet success/failure
of each packet index separately, and average it across the
different channel traces. This way, we arrive at the PER
corresponding to each packet index. We plot the performance
for the 10th packet. We repeat this process for different SNR
values, different number of receive antennas, different number
of states in the FSMC, and different AS algorithms.

The POMDP problem is formulated as explained in
Section III. We consider POMDP models where the number
of states per channel is2, 4 and8. For each POMDP problem
we find two solutions: as given by the Approximate POMDP
Planning Toolkit [31] and the myopic policy. We plot the
performance of POMDP in two cases: when there is perfect
CSI on the selected antenna, and when the CSI is estimated
on all antennas.

B. Comparison with Existing Schemes

In this subsection, we compare the performance of the
POMDP solution with the AS training based on the weighting
scheme proposed in [26]. Another scheme that is evaluated
is Max picking, which picks the antenna with the highest
estimated channel gain in the AS training phase. We also
evaluate the PER in case of a single AE (No AS). Perfect
CSI denotes the PER curve with a genie-aided receiver that
has perfect CSI on all antennas. Except for the POMDP, all
the schemes deal with continuous-valued channel gains. We
present comparisons of the PER performance of the different
schemes as a function of the data SNR, normalized Doppler
frequency and packet index.

1) Variation of PER with SNR:The performance of the
optimal policy as obtained from SARSOP tool and myopic
policy for the 2-states channel model is plotted in Fig. 4 and
those for the 4-states model is plotted in Fig. 5. For the 2-
states model with perfect CSI on the selected antenna, we have
shown the optimality of myopic policy. Hence, in the 2-state
case, the myopic policy marginally outperforms the SARSOP
policy, as expected. In the 4-state cases, the results show that
the myopic policy performs very close to the SARSOP policy,
which is again expected, since the SARSOP tool yields a near-
optimal policy, and the optimality of the myopic policy is not
valid in this case. However, in all cases, the performance dif-
ference between the myopic policy and the SARSOP policy is
marginal, indicating that the computationally simpler myopic
performance achieves near-optimal performance. The dramatic
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improvement in performance of our proposed scheme is due
to its effectiveness in utilizing the DM RS for data decoding
as well as for AS decisions. The other schemes are wholly
dependent on the channel estimates from AS training phase
for AS as well as for the data decoding. These estimates start
getting outdated as the data packets are received, while the
proposed scheme updates the channel estimates from the DM
RS pilots available in each packet. In Fig. 5, the other schemes’
performance are not shown; they are unchanged because they
do not discretize the channel state. However, the performance
with Perfect CSI is plotted for comparison.

2) Variation of PER with Normalized Doppler Frequency:
Here, we plot the PER of different schemes as a function of
normalized Doppler frequency (fmTpkt). In Fig. 6, we plot the
performance of 2-states channel model along with the other
schemes. At lower normalized Doppler frequencies, the opti-
mal weighting scheme and theMax picking scheme out-
perform the POMDP solution. This is because these schemes
have the advantage of comparing among the continuous-valued
channel gains whereas the POMDP solution has to deal with
belief vector of a finite state channel model. However, as
the fmTpkt increases, the channel varies considerably with
time, and the other schemes fail to track the variation. Hence,
they perform worse than the POMDP solution. In Fig. 7,
where there are 4 states per channel, the POMDP solution
performs better than the 2-states model. TheNo AS scheme
has only one AE, and hence, performs the worst, even at lower
normalized Doppler frequencies.

3) Variation of PER with packet index:Here, we plot the
variation in the PER as a function of the packet index for the
different schemes. The SNR is fixed at 20 dB andfmTpkt at
0.02. Figs. 8 and 9 give the performance of the 2-states and
4-states channel model, respectively. Starting from the first
packet itself, the POMDP solution performs better than the
other solutions. This is because the POMDP solution uses
the DM RS to track the channel state of the selected AE,
which is not incorporated by the other schemes. As one gets
farther away from the AS training phase, the performance gets
progressively worse. However, the degradation in performance
is far lower for the POMDP solution compared to the other
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schemes. The other schemes necessitate the transmission ofa
fresh AS training phase after, say, the10th packet, since the
PER becomes close to 1.

C. Comparison with Heuristic Methods

We now consider the performance of the heuristic schemes
for AS proposed in Section V. In Fig. 10, we plot the PER as
a function of normalized Doppler frequency for the heuristic
schemes, and compare it with the POMDP solution. For the
sake of simplicity, in case of the POMDP, the performance
of the myopic policy is plotted. The overall performance
of both the modified schemes is superior to that of their
counterparts in the literature, as they utilize information from
the DM RS in addition to the initial AS phase for finding
the best AE. In fact, the modifiedMax picking (labeled
Mod. max picking) outperforms the POMDP solutions
(with the 2-states and 4-states channel models) at the lower
Doppler frequencies. This is because the POMDP discretizes
the channel gains. However, as we increase the number of
states to model the channel in the POMDP, the performance
is improved. The POMDP solution for 8-states channel model
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for the 10th packet with data SNR =20 dB.

performs as well asMod. max picking. A difference be-
tween the POMDP approach and the heuristic schemes is that
the POMDP approach accounts for the evolution of the belief
states of the non-selected antennas also, while in the heuristic
scheme, only the selected antenna’s channel gain is updated.
Note that, the relative performance of the different schemes
depends on a variety of factors including the pilot SNR, data
SNR, doppler frequency, number of receive antennas, etc. In
the typical settings considered in this simulation result,we see
that the performance of the modified weighting scheme (Mod.
weighting scheme) degrades faster than that of the other
schemes. The reason is that, the original weighting scheme
[26] assumes that the channel estimates from the AS training
phase are used for both data decoding and AS. However, in
the modified scheme, we obtain a new estimate of the channel
on the selected AE from the DM RS, which can be used
for data decoding. Also, the weighting scheme in [26] is no
longer optimal since the additional CSI is not exploited. The
improved performance of the modified schemes compared to
the existing weighting schemes underlines the importance of
the DM RS in helping the receiver decide which antenna to use
in selecting the next packet, in terms of maximizing the long-
term reward. In Fig. 10, for lower values of the normalized
Doppler frequency, the 2-states channel model gives worse
performance than the others. This is expected, since, with
more number of states, we can track a slow-varying channel
more accurately. However, as the channel varies faster, the
performance of 2-states model starts to outperform others.This
is partly an artifact of the FSMC model, which allows state
transitions between adjacent states only. Due to that restriction,
a channel model with fewer number of states is better suited
to represent a fast-varying channel.

D. Channel correlation

The system model considered so far assumed spatially
uncorrelated channels. It is well-known that correlation among
the channels degrades the PER performance of AS based
MIMO systems. Hence, it is of interest to study how the pro-
posed scheme performs in the presence of spatial correlation.
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The system model remains the same as explained in Sec. II,
except that theN channels are now correlated. We assume that
the correlation matrix has entries1, ρ, ρ2, . . . , ρN−1 on the first
row, i.e., the correlation coefficient between adjacent antennas
is ρ. The POMDP formulation also remains the same as before,
except that the state transition probability Pr(Sj |Si) needs to
account for the spatial correlation between the antennas. Other
than using the modified state transition probability matrix,
the POMDP solution remains identical to the one presented
above. In this experiment, we evaluate the PER performance
of different schemes under spatially correlated channels with
ρ = 0.6. For the POMDP formulation, we have considered
the 2-state model. The result is shown in Fig. 11. We see that,
compared to the uncorrelated case in Fig. 4, the performance
of all schemes has degraded, but the relative performance of
the different schemes remains more or less unchanged.

VII. C ONCLUSION

In this work, we considered a wireless communication
system with a receiver having single RF chain andN AEs. By
formulating the problem as a POMDP, we were able to exploit
the temporal correlation of the channel as well as the additional
information available in the DM RS. We showed the optimality
of the computationally simple myopic policy for the 2 state
channel model under the assumption of perfect CSI on the
selected antenna and positively correlated channels. Through
simulations, we showed that the performance of the myopic
policy is very close to that of the optimal policy obtained
from the SARSOP POMDP solver, even for the 4-states
channel model. We also proposed two heuristic policies that
offer excellent performance and are simple to implement. The
primary advantage of our proposed approach is that it obviates
the need for frequent AS training phases. This reduction in
training overhead can translate to improved spectral efficiency,
or allow transmission at lower power to improve the energy
efficiency and reduce interference to other systems. Future
work can include the analysis of optimality of the myopic
policy for a generalκ-state channel model, and the design of

joint transmit-receive AS schemes based on Markov decision
theory.

APPENDIX A
PROOF OF DECOMPOSABILITY OF THE PSEUDO VALUE

FUNCTION

We are interested in proving the following for allt =
1, 2, . . . , T and all l ∈ {1, 2, . . . , N}.

Wt(ω1, . . . , ωl, . . . , ωN)

= ωlWt(ω1, . . . , 1, . . . , ωN)

+ (1− ωl)Wt(ω1, . . . , 0, . . . , ωN ). (18)

The proof proceeds by induction. The result obviously holds
for t = T . Assuming it holds fort+ 1, . . . , T also, (18) can
be proved as follows. Consider the case whenl 6= N . We can
expand the LHS as given below:

Wt(Ω(t)) = f(ωN )+βωNWt+1(τ(ω1), . . . , τ(ωl), . . . , p11)

+ β(1 − ωN )Wt+1(p01, . . . , τ(ωl), . . . , τ(ωN−1)). (19)

Now, expanding the first term in the RHS of (18) and applying
the induction hypothesis we have

ωlWt(ω1, . . . , 1, . . . , ωN )

= ωl [f(ωN) + βωNWt+1(τ(ω1), . . . , p11, . . . , p11)

+β(1− ωN)Wt+1(p01, . . . , p11, . . . , τ(ωN−1)]

= ωlf(ωN) + βωlp11 [ωNWt+1(τ(ω1), . . . , 1, . . . , p11)

+(1− ωN )Wt+1(p01, . . . , 1, . . . , τ(ωN−1)]

+ βωl(1− p11) [ωNWt+1(τ(ω1), . . . , 0, . . . , p11)

+(1− ωN )Wt+1(p01, . . . , 0, . . . , τ(ωN−1)] . (20)

Similarly, we expand the second term in the RHS of (18), to
get

(1− ωl)Wt(ω1, . . . , 0, . . . , ωN )

= (1− ωl) [f(ωN) + βωNWt+1(τ(ω1), . . . , p01, . . . , p11)

+β(1− ωN)Wt+1(p01, . . . , p01, . . . , τ(ωN−1)]

= (1 − ωl)f(ωN )

+ β(1− ωl)p01 [ωNWt+1(τ(ω1), . . . , 1, . . . , p11)

+(1− ωN )Wt+1(p01, . . . , 1, . . . , τ(ωN−1)]

+ β(1 − ωl)(1− p01) [ωNWt+1(τ(ω1), . . . , 0, . . . , p11)

+(1− ωN )Wt+1(p11, . . . , 0, . . . , τ(ωN−1)] . (21)

Combining (20) and (21) and noting the fact thatτ(ωl) =
p11ωl + (1− ωl)p01, we get

ωlWt(ω1, . . . , 1, . . . , ωN )+ (1−ωl)Wt(ω1, . . . , 0, . . . , ωN )

= f(ωN) + βτ(ωl) [ωNWt+1(τ(ω1), . . . , 1, . . . , p11)

+(1− ωN )Wt+1(p01, . . . , 1, . . . , τ(ωN−1)]

+ β(1− τ(ωl)) [ωNWt+1(τ(ω1), . . . , 0, . . . , p11)

+(1− ωN )Wt+1(p01, . . . , 0, . . . , τ(ωN−1)]

= f(ωN) + β [ωNWt+1(τ(ω1), . . . , τ(ωl), . . . , p11)

+(1− ωN )Wt+1(p01, . . . , τ(ωl), . . . , τ(ωN−1)]

= Wt(ω1, . . . , ωl, . . . , ωN). (22)
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This proves (18) for the case whenl 6= N . Now, consider the
case, whenl = N , and expand the LHS of (18), to get

Wt(Ω(t)) = f(ωN) + βωNWt+1(τ(ω1), . . . , p11)

+ β(1 − ωN )Wt+1(p01, . . . , τ(ωN−1)). (23)

Expanding the RHS of (18), whenl = N , gives the following
terms:

ωNWt(ω1, . . . , ωN−1, 1)

= ωN [f(1) + βWt+1(τ(ω1), . . . , τ(ωN−1), p11)] , (24)

(1− ωN )Wt(ω1, . . . , ωN−1, 0)

= (1− ωN ) [f(0) + βWt+1(p01, τ(ω1), . . . , τ(ωN−1))] .
(25)

Noting thatf(ωN) = ωNf(1) + (1 − ωN )f(0), it is straight
forward to verify that combining (24) and (25) gives the RHS
of (23).

APPENDIX B
PROOF OFLEMMA 1

The two inequalities in the lemma will be proven together
by induction. For timet = T , equation (14) becomes∆ +
f(ω1) ≥ f(ωN). This is true, since∆ is the maximum value
f(ωN ) − f(ω1) can take. In (15), for timet = T and when
l = N−2, we havef(x) ≥ f(y) sincex ≥ y. Whenl ≤ N−3,
we have the equality. Assuming both (14) and (15) are true
for time t+1, t+2, . . . , T , let us first prove (14) holds fort.
The second term in the LHS of (14) corresponds to the case
when antenna1 is selected and the RHS to that when antenna
N is selected, at timet. A sample path argument similar to
the one in [50] is adopted in our proof. We consider all the
four realizations for AEs1 andN and show that (14) holds
in all cases.

1) Case 1.a: The states of AE1 and N are 0 and 1,
respectively. Let us denote the LHS and RHS of (14) under
this realization asL|[0,1] andR|[0,1], respectively. We have

L|[0,1] = ∆+ f(0) + βWt+1(p01, τ(ω2), . . . , τ(ωN−1), p11)
(26)

R|[0,1] = f(1) + βWt+1(p01, τ(ω2), . . . , τ(ωN−1), p11)).
(27)

The last summation term in both the above equations is
evidently the same. Noting that in this particular realization
f(0) + ∆ = f(1), we haveL|[0,1] = R|[0,1].

2) Case 1.b:The states of AE1 andN are both0.

L|[0,0] = ∆+ f(0) + βWt+1(p01, τ(ω2), . . . , τ(ωN−1), p01)

R|[0,0] = f(0) + βWt+1(p01, p01, τ(ω2), . . . , τ(ωN−1))

≤ f(0) + β[∆ +Wt+1(p01, τ(ω2), . . . , τ(ωN−1), p01)]

≤ f(0) + ∆+ βWt+1(p01, τ(ω2), . . . , τ(ωN−1), p01)

= L|[0,0] (28)

where the first inequality is due to the induction hypothesisof
(14). The second inequality utilizes the fact thatβ ≤ 1.

3) Case 1.c:The states of AE 1 andN are both 1.

L|[1,1] = ∆+ f(1) + βWt+1(τ(ω2), . . . , τ(ωN−1), p11, p11)

R|[1,1] = f(1) + βWt+1(p11, τ(ω2), . . . , τ(ωN−1), p11)

≤ f(1) + βWt+1(τ(ω2), . . . , τ(ωN−1), p11, p11)

= L|[1,1] −∆

≤ L|[1,1] (29)

where the first inequality is due to the repeated applicationof
the induction hypothesis of (15) and the last equality is due
to the assumption that∆ ≥ 0.

4) Case 1.d: The states of AE 1 andN are 1 and 0
respectively.

L|[1,0] = ∆+ f(1) + βWt+1(τ(ω2), . . . , τ(ωN−1), p01, p11)

R|[1,0] = f(0) + βWt+1(p01, p11, τ(ω2), . . . , τ(ωN−1))

≤ f(0) + βWt+1(p01, τ(ω2), . . . , τ(ωN−1), p11)

≤ f(0) + β[∆ +Wt+1(τ(ω2), . . . , τ(ωN−1), p11, p01)]

≤ f(0) + ∆ + βWt+1(τ(ω2), . . . , τ(ωN−1), p01, p11)

= L|[1,0] −∆

≤ L|[1,0] (30)

where the first and third inequality uses the induction hy-
pothesis of (15). The second inequality utilizes the induction
hypothesis of (14).

Now we proceed to prove (15) for timet. We consider two
cases as given below.

5) Case 2.a:l ≤ N − 3.

LHS = f(ωN ) + βωNWt+1(τ(ω1), . . . , τ(y), τ(x), . . . , p11)

+ β(1 − ωN )Wt+1(p01, τ(ω1), . . . , τ(y), τ(x), . . . , τ(ωN−1))

≥ f(ωN ) + βωNWt+1(τ(ω1), . . . , τ(x), τ(y), . . . , p11)

+ β(1 − ωN )Wt+1(p01, τ(ω1), . . . , τ(x), τ(y), . . . , τ(ωN−1))

= RHS (31)

where the inequality is due to the induction hypothesis of (15).

6) Case 2.b:l = N − 2. From (12), we have

Wt(ω1, . . . , ωN−2, y, x)−Wt(ω1, . . . , ωN−2, x, y)

= (x− y) [Wt(ω1, . . . , ωN−2, 0, 1)

−Wt(ω1, . . . , ωN−2, 1, 0)] . (32)

Expanding the last term on the RHS,

Wt(ω1, . . . , ωN−2, 1, 0, )

= f(0) + βWt+1(p01, τ(ω1), . . . , τ(ωN−2), p11)

≤ f(0) + β(∆ +Wt+1(τ(ω1), . . . , τ(ωN−2), p11, p01))

≤ f(0) + ∆+ βWt+1(τ(ω1), . . . , τ(ωN−2), p11, p01)

≤ f(1) + βWt+1(τ(ω1), . . . , τ(ωN−2), p01, p11)

= Wt(ω1, . . . , ωN−2, 0, 1). (33)

The first inequality is due to the induction hypothesis of (14)
and the second inequality is due toβ ≤ 1. The last inequality
is due to the induction hypothesis of (15) and alsof(0)+∆ =
f(1). Sincex ≥ y, (32) evaluates to a positive quantity. This
completes the proof Lemma 1.
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