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Abstract—This paper considers the problem of receive antenna channel state information (CSI) at the receiver [OJ+141. |
selection (AS) in a multiple antenna communication system practice, the channel state is typically estimated usingalls
having a single radio frequency (RF) chain. The AS decisions \,,mper of pilot symbols embedded in the packet, which leads

are based on noisy channel estimates obtained using known, . ) .
pilot symbols embedded in the data packets. The goal here is t to imperfect knowledge of CSI at the receiver. The impact of

minimize the average packet error rate (PER), by exploitingtne  imperfect CSI on the performance of AS is studied [in! [15]
known temporal correlation of the channel. As the underlyig and [16], and it is shown that, surprisingly, the diversitder
tC:]Wannelsl are ?n,qus F}aftii"gRObS.efve.d tlJSing the Fi!ot symba, achievable with perfect CSI is still preserved. Other stadi
e problem o or minimization is cast into a par- ; ; ; ;

tially observable Markov decision process (POMDP) framewrk. relate_d to AS include AS .Wlth transmit beamformldg__l[l?],
Under mild assumptions, the optimality of a myopic policy is AS W'th_ analog power estimators [18], and AS with spatial
established for the 2-state channel case. Also, two heurist Correlation between antennas|[19].][20]. Another apprdlaah
AS schemes are proposed based on a weighted combination othas been explored in the literature is the use of reinforcéme
the estimated channel states on the different antennas. Tee |earning techniques (see, e.d..][2L[]2[23]). Here, the geal
schemes utilize the continuous-valued received pilot synols to to minimize the regret compared to a policy that always

make the AS decisions, and are shown to offer performance . .
comparable to the POMDP approach, which requires one to chooses the statistically best antenna. These are aplelicab

quantize the channel and observations to a finite set of stateThe When the channel statistics are not known and the policy

performance improvement offered by the POMDP solution and must be determined solely from the past AS decisions and
the proposed heuristic solutions relative to existing AS taining-  resulting outcomes. In this work, we focus on receive ardgenn
based approaches is illustrated using Monte Carlo simulatins. — gg|action in the spatially uncorrelated channel case, kit w

Index Terms—Antenna selection, POMDP, myopic policy, finite . . s .
state Markov chain will also briefly indicate how the approach easily allows tme
incorporate the effect of spatial correlation between rams.

Typically, in order to perform AS, the receiver first requsest

I. INTRODUCTION for an AS training phase, following which the transmittends

Antenna selection (AS) is a popular technique for reducifyt £ = 1 sets of N > 1 known fraining symbols to the
the hardware complexity and cost of a multiple input muésipl™eceiver [24], whereN is the number of receive antennas.
output system[[2]]6]. In AS, since only a subset of th&N€ time duration between consecutive p'IOtSHSET T,
available antennas is used for transmission/receptioly, mn WhereT is the pilot symbol duration angl > 2 [25]4 Thus,
small number of the relatively more expensive radio freqyentn® total AS training duration is)N LT;. The AS training
(RF) chains need to be deployed. AS is supported by wirele%'%ase_'s repeated_vyhenever the channel estimates getexljtdat
standards such as IEEE 802.11h [7] and 3GPP Long TelfP0sing a non-trivial o_verhead on the AS based system._ln
Evolution (LTE) [€]. AS can be employed at the transmittel20: the authors consider the receive AS based on noisy
as well as at the receiver. The focus of this work is on AS f@nd outdated channel estimates obtained from the AS tginin
a multiple-antenna receiver with a single RF chain, with tHd1ase. They propose scheme for weighting the channel gain
goal of exploiting the knowledge of the temporal correlaio  €Stimates that minimizes the symbol error probability (SEP
the wireless channel to perform the optimal tradeoff betwed N€ channel state estimates obtained durlng the AS training
exploring for new antennas and exploiting the best antenh3ase are used for both AS and data decoding purposes.
based on current knowledge. In many practical systems, there are additional pilots tada

There has been an enormous amount of research in the d¥aase also, viz. the demodulation reference signals (DM RS)
of antenna selection for MIMO systems in the recent years; Wéich may be utilized for data decoding [8]. In_[25], Saleh
refer the interested reader {g [2] and [3] for excellenttialo €t al. take this into account in data decoding, and propose an

surveys of the area. Some of the early work assumed perfagorithm for AS, that maximizes the post-processing SNR. A
channel prediction method based on Slepian basis expansion
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used for data decoding. However, the CSI obtained from thealistic if we compare a typical file size to the number o bit
data phase is not used for making future AS decisions. ¢arried by an individual packet; 2) it is needed to know the
[27], AS is formulated in a decision theoretic frameworkime horizon to solve a finite horizon POMDP, an information
with the aim of maximizing the throughput. A training basethat is not available at the physical layer in practice; 3 th
selection is assumed, with each frame consisting of an Aiite horizon assumption results in non stationary optimal
training phase, a data packet and an error check informatipolicies (i.e. policies that depend on the time index), Whic
Information obtained from the error check observation isdus are more difficult to implement in practice. On the other hand
in the future AS decisions. However, the channel is assumid optimal policy for an infinite horizon problem is known
to remain constant for the entire frame duration, which mag be stationary[[30].
not hold when the channel is fast-varying. Also, the striectu  The contributions of our work are as follows. We cast the
of the optimal policy is not analyzed. problem as a POMDP, which allows us to leverage a host of

In the context of the above, it is pertinent to consider thexisting approaches to find an optimal AS scheme. Moreover,
use of DM RS for AS also, thereby alleviating the dependenoer proposed approach obviates the need for an expensive AS
of the AS process on the lengthy training phase. As thigining phase at the start of each data packet, unlike most
channel is correlated in time, and since each packet revealisthe past work on AS. On the other hand, our method
new information about the channel state only on the selecteah also exploit an AS training phase, when present. Hence,
antenna, the AS decisions affect both the immediate packetan be employed in systems designed based on previous
reception anduture packet receptions. The AS can thus bAS approaches as well. For the case when the number of
viewed as a form of control, as it determines the accurastates per antenna is two, with perfect CSI on the selected
of the CSI available at the receiver on the different antennantenna and positively correlafedhannels, we show that
Hence, we formulate the AS problem in a decision theoretiptimal policy for the AS problem is myopic in nature. An
framework, where the problem is to sequentially choose aptimal policy, in general, maximizes tHeng termreward,
antenna to receive the current packet, based on the historymhile a myopic policy is designed to maximize only the
past actions and observations, with the goal of maximizingimmediate reward, ignoring the future rewards. In our set-
notion of expected long term reward. up, a myopic policy selects the antenna by only considering

The fundamental trade off involved here is as followshe probability of correctly receiving the current packehe
Sticking to a given antenna for as long as its chaseemingly myopic policy is simpler to compute as well as to implement,
good is not optimal in general, since we lose track of theompared to a general POMDP solution. We evaluate the
channel on the other antennas, some of which might be immeerage PER performance of different AS policies via Monte
better state. On the other hand, frequent switching betwe@arlo simulations. The results show that, even with impztrfe
antennas would result in not fully utilizing the ones thag arCSI on all antennas and fav > 2, the myopic policy offers
in good channel states. An optimal policy is the one whigberformance comparable to the POMDP solution. Inspired by
balances between the two and achieves the maximum expedhési result on the nature of the optimal policy, we propose tw
long term reward. Now, at any given time, the true statdsuristic schemes for AS and evaluate their performance. Th
of antennas are not fully revealed to the receiver, i.e., tiperformance comparison of these schemes, which are based
states are partially observable through the DM RS. Since the continuous-valued channel gain, with that of the finiggest
action taken by the receiver controls the observabilitg tiMarkov chain (FSMC)-based POMDP solution gives further
problem is cast as a partially observable Markov decisiansights into the nature of the POMDP solution.
process (POMDP) [28]=[30]. The goal is to obtain an optimal We also compare our results with the weighting scheme
policy for minimizing the average packet error rate (PER). proposed in[[26], which is based on AS ftraining. Another

There are two kinds of POMDP formulations: the finitsscheme which picks the antenna with the highest channel gain
horizon POMDP and the infinite horizon POMDP. In thén the AS training phase for receiving the subsequent packet
former approach, the goal is to minimize the average PHRalso evaluated. We show the proposed scheme outperforms
over a fixed (and typically, small) number of packets thdtoth these schemes. The results highlight the advantage of
are to be received. The infinite horizon POMDP assumaslizing the DM RS information for data decoding as well as
that the data stream is very long, and is therefore conveniéer AS purposes, in terms optimizing the PER performance.
for optimizing a long-term reward. In both cases, the C$lor example, in the case of PER vs. SNR, the PER of the
is estimated on the selected antenna upon reception of eaglsting schemes exhibits an error floor, whereas, the PER of
packet, and AS based on the optimal POMDP solution strikése proposed scheme decreases monotonically with SNR.
the right balance between exploration (to find better argshn The rest of the paper is organized as follows. In $dc. II,
and exploitation (of the best antenna in hand). Our POMDFe describe the system model. We develop the POMDP
formulation in this paper is valid both the finite and infinitdormulation of the AS problem in SeEllll. We establish the
horizon cases. The SARSOP algorithm from the Approximaggtimality of the myopic policy under certain conditions in
POMDP Planning Toolkit[[31] used to solve the infiniteSec[IV¥. We present a discussion about the relative merits of
horizon POMDP in this paper can also be used to solve a finiléferent policies, in terms of performance and computsilo
horizon POMDP scenario, by adjusting the stopping criterio o o _ o

P . . A 2-state channel is said to be positively correlated if ttaestransition

We have, however, opted for the infinite horizon model in ﬂ‘kﬁobabilities of the channel are such that the transitiotheosame state has
sequel for the following reasons: 1) the long data stream ashigher probability than that to the other state.



derived from the continuous-valued channel dynamics leads
to a discrete state POMDP. There are three main approaches
to solving continuous POMDPs: Perselis][34], Monte Carlo
POMDP [35] and Monte Carlo value iteratidn [36]. References
[34] and [35] assume that belief value functions are Ganssia
T or a mixture of Gaussian functions, an assumption which is
not supported in our case. Refererice [36] uses a partickbas
representation of the belief but assumes discrete obgamsat
which is also not valid in our case. In contrast, an algorithm
di | dy p dp like SARSOP is known to solve discrete state POMDPs
with up to 1,00,000 states in a reasonable time, which is
sufficient for our purposes. Thus, we propose to pose the
problem as a discrete state POMDP. Accordingly, we model
Fig. 1. AS with CSI feedback from packet reception. the Rayleigh faded time correlated channels as a finite state
Markov chain (FSMC)[[3[7],[[38], to partition the received
SNR on the AEs. Finite State Markov Channel (FSMC) is
complexity, in Sec['V/. Monte Carlo simulation results arg popular model for a fading channel, and is known to be
presented in Se€._VI, and concluding remarks are offered dgcurate for packet-level studies. In this work, we use the

Sec[VIl. Proofs of some of the lemmas and other claims aBpular FSMC model proposed by Zhang and Kassam [39] to

|
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provided in the appendices. partition the instantaneous signal-to-noise ratios (SNRghe
receive AEs. LeG = {1,2,...,x} denote the state space of
Il. SYSTEM MODEL the FSMC channel for a given normalized Doppler frequency

We consider system where a single antenna transmitferZpw, Where f,, is the maximum Doppler frequency. Let
is communicating with a receiver equipped with antenna {~v1,72,...,7«+1} denote the SNR thresholds corresponding
elements (AE) and one RF chain. The communication occuesthe states irgj, determined following the procedure in[39].
in the form of data packets of duratidiy. Each packet has For a Rayleigh fading channel following the Jakes’ spectrum
D data symbols, denoted h¥;, j = 1,2,...,D and a DM for time variation, the state transition probability matoif the
RS, denoted by. The goal at the receiver is to select the be§tSMC as a function of the normalized Doppler frequency is
out of the N AEs to receive each packet, for minimizing theknown [39].

PER. The channels from the transmit antenna to the receiv@le emphasize that, in this work, the instantaneous SNR is
antennas are modeled as frequency flat, Rayleigh faded aligtretized into a finite number of states only for the puepafs
independent across the AEs. The time evolution of the cHandefining the state space, obtaining the correspondingtstate
follows the Jakes’ spectrur [B2[, [33], with the receiveving sition probabilities, and solving the POMDP. Our formudati

the knowledge of the doppler frequency. For simplicity, wean be directly applied to other channel models like Rician o
assume that the channel remains constant for the duratian dakagami fading. The FSMC modeling of these channels are
packet. Thus, in this model, the system operates in discreliscussed in[[40] and[41]. We also note that the formulation
time steps of duratiorifp,. A solid state switch achievesdirectly extends to frequency selective channels also,sygu
the connection between the selected AE and the RF chalme so-called exponential effective SNR mapping (EESM)
which has switching speeds on the order of a few hundredsmétric to convert the frequency-selective wideband chianne
nanoseconds$ [25]. Hence, the switching delays are nefgligilfirst into a continuous-valued scalar chanriell [42], apglyin

The sequence of operations involved in the AS processe of the above techniques to discretize the channel into a
is depicted in[Figure]1l. ASdenotes the AS decision forfinite set of states. Once the state transition probatsilisied
selecting the AE for theé™ packet, pkt At the beginning the packet error rates for the different states are obtaihed
of each packet, the channels make a state transition. The #&mework developed in this paper can be used to find an
selection is based on the CSI available up to and includilogtimal AS scheme.
the previous packet. The DM RS embedded in the packetFor a POMDP, the statistical information of the system
yields new information on the channel state of the AE that the time stept, given the entire history of actions and
receives the packet. This information is used to decode thlservations, can be captured inbalief vectorgiven by
packet as well as to update the CSI of the selected AE. Withit) = {bs(t)}ses, whereS is the state space arig(¢) is
the additional CSI gained in the current packet and the tyistdhe conditional probability, given the history, that thestgm is
of decisions and observations, a new selection decisiom@em in stateS at timet. The dynamic behavior of the belief vector
for the next packet, and the process continues. is thus a discrete-time continuous-state Markov prodesSk [4

The modeling of the state process is crucial to the solugbili A policy for a POMDP is a prescription of an action
of the resulting POMDP. In particular, since the channebrresponding to the current belief vector. Each policy has
state is continuous-valued, a direct formulation of the A8n expected long term reward associated with it. The optimal
problem in a POMDP framework leads to a continuous stapelicy is one which has the maximum expected long term
POMDP. On the other hand, quantizing the channel to a finiteward. Once the components of the POMDP are defined, a
number of states and using a state transition probabilityina POMDP solver can be used to find the optimal policy for



the problem. At timet, let ¢+ denote the AE selected by theprior probabilities are available. The AS training phastpse
policy, and leth;(t) be the complex valued channel gain ofn getting a good estimate of the initial belief state, which
the selected AE. Then, the instantaneous SNR at the receisppeeds up the convergence of the policy. This is beneficial
is given by~ = |h;(t)|>v0, where~, is the average per- when the channel is slowly varying. On the other hand, for
symbol SNR. Ify; < () < ~;,4, then the AE is said to be fast varying channels, the initial estimate from the ASrtirag

in statej. The received DM RS on the selected AE, droppinghase is less important. In this case, more frequent DM RS
the time index, is given by = h;p+n, wherep is the known pilots are required for tracking the time-varying channel.

pilot symbol andn is the additive white Gaussian noise with 5) Reward: Since we are interested in PER minimization,
varianceo;. The maximum likelihood (ML) estimate of the\ye ‘define our reward as unity when the packet is correctly
channel gain ish; = \f)ﬁy = h; + e, Wheree is the noise received, and zero otherwise. Thus, maximizing the long ter
term, given by%n. The estimated channel gain is used reward is equivalent to minimizing the expected average.PER
to decode the packet, and also as additional information forThe expected immediate reward associated with the action
selecting the AE for receiving the next packet. The latter jsc A when the system state & is given by
accomplished by updating the belief vector. The optimaicyol
then maps the updated belief vector to the index of AE to be K
selected for receiving the next packet. In the next section, o(a,S) = ZPr(o = j|S(a))Peor(0 = j,S(a)), (1)
we develop the POMDP formulation of the AS problem for j=1
minimizing the average PER.
whereS(a) denotes the true state of the selected antenna and

I1l. POMDP FORMULATION denotes the observation on the selected anteRpdo, S(a))

The POMDP formulation of the AS problem consists of th I\éetsrl}gesgt(;bﬁssbl(lggl ggdcﬁar:c;gsg\?:g Iggtglzsﬁ? cSI?]eotu‘lv;he

following components. . be noted that in our case the reward depends on both the
1; Sétate SzpaceTh?Vst?_tﬁ S%? ceofthe systen;;s rﬁpreselntﬁae state and the observed state unlike a standard POMDP
as§ = {1,2,...,k}". Thei" state is given by the tuple formulation. The DM RS observation affects the reward as it

Si € S, whose entries specify the channel stateg on each Of‘ %sed for decoding the data packet. A closed form expressio
N antennas. When the system makes a transition from st £ p (0,S(a)), when both observatiom and S(a) are
cor\Y, 1

Si 10 .stateSj ! eaph c.hannel has a corresponding transit scretized values, is analytically intractable. This ecause
associated with it. Since the channels are assumed to

. . - o tRE performance depends on the decoding algorithm used
independent, the transition probability(Bf|S;) is given by for packet reception, which makes it difficult to come up

the product of the state transition probabilities assediatith with a general, closed form expression for the PER under

each cha_mnel. _ o ~ Cchannel mismatch. Moreover, our focus in this paper is on
2) Action Space:The’thacno.n space is given byl = showing how a decision theoretic formulation can be applied

{1’2,{h' -, N} where the: action corresponds to selecting, solving the problem of receive antenna selection, retieer

the i antenna. for packet reception. . . on analyzing the PER under channel estimation errors. Hence
3) Obgervatlon Space;The observauon. on selecting an]?cor(o, S(a)) is calculated experimentally via simulations. The

antenna is the received signal corresponding to the DM deﬁrameters for this simulation will be explainedin Sechifh

the packet, which provides information on the channel stajg,q hropapility of correctly receiving the packet is caktetd
of that antenna. Since the CSI from the pilot is continuougs, 4 pairs of true and observation states

valued, we need to discretize it into states using the tlldsh . .
. . . The expected immediate reward can now be expressed as a

given by the FSMC model. Then, the observation space s . the belief stateh, as follows:

O ={1,2,...,k}. Let the observation be € O, when the ' '

state of the system i§ and the action taken is. Let S(a)

denote the state of the selected AE when the system stéte is R(a,b) = Z bso(a, S), (2)

Then the observation probability (S, a, o) is the probability Ses

of observing stat® on the selected AE, given its true state, _ .

S(a). The derivation of this probability is given in][1]. It vage Wherebs is the component of the belief vectbrcorrespond-

with the pilot SNR, and in the case of perfect CSI on th@d to the states.

selected AEO(S,a,0) =1 if o = S(a), the true state of the 6) Objective and the Optimal PolicyThe objective is to

selected AE, an@(S, a,0) = 0 otherwise. minimize the expected average PER, over an infinite horizon.
4) Belief Vector:At each time step, the belief vectob(¢) The averaging is done in a discounted sense, i.e., the future

captures the statistical information of the system. Wet staewards are discounted by a factor A policy is a mapping

with an initial belief vectorb(1) and update it at each statefrom the set of all belief vectors to the action space, i.e., a

transition and with each observation. In a training based Afolicy has an action corresponding to a given belief vector.

we can utilize the information from the training phase toat There is a reward associated with executing a policy. Let

an initial belief state. When there is no AS training phaséj(b) denote the expected total discounted reward associated

we can initialize the belief states as the stationary priibab with a policy « starting from time step = 1 and belief vector

of the Markov channel, which is a usual practice when nloe, with the discount factor being. The optimal policy solves



the following optimization problem

max J3 (b) = maxE [ > 8 R(r(b(t)), b())[b(1) = b| , P00

t=1
3)
where 0 < g < 1, and R(w(b(t)),b(t)) is the reward
collected under belief statb(t) when the AEx(b(t)) is
selected for packet reception.
We have thus formulated the AS problem as a POMD
There are several tools available for solving POMDPS [44]-

[46]. Hov_vever, solving the POMDP can quickly beComﬁf’ormer, the belief is on each antenna, whereas in the latier,
computationally burdensome, as the number of states of ief is on the joint state of tha/ antennas. Let(¢) denote

system under consideration becomes large. On the other hapd 4ntenna selected at timeOnce an AE(#) is selected, its
using a smaller number of states compromises on the acCurge¥ channel state «) is revealed by the DM RS. With the
a .

of the FSMC model of the underlying continuous-valuefle,; ghservation on the selected antenna, using Bayes' rule,
channel. A usual practice, in this scenario, is to exploee thy update the belief vector as follows:

effectiveness of a simpler but possibly suboptimal polioy f

AS. A myopic policy is one such policy. In the next section, we D11 it a(t) =1,8q.0) = 1,

show that under the mild assumption of positively correlate _ 1) — it a(t) = i, 5,0 = 0 4
channels and perfect CSI on the selected AE, for the 2-states wi(t +1) = { Por Sa@) =0, (4)
per-antenna model, the myopic policy is indeed optimal for T(wi(t)) if a(t) #1,

the AS POMDP problem. Note that, although the 2-state

channel model might appear overly simplistic, it retaing thvherer(w;(t)) = wi(t)p11 + (1 — wi(t))po1 is the one-step
essence of the time-variations of the wireless channel, ap@lief update when antenrids not selected.

therefore provides useful intuitions on how to design near- We seek to maximize the total expected discounted reward

optimal policies for channel models with number of statedver a horizon ofl". That is, we wish to solve

P11

P10
bad good
(0) 1)
bo1

B’g. 2. 2-state model of the channel.

greater than two. As will be demonstrated through simutegjo T
the myopic policy continues to remain nearly optimal evenr* = argmaxE, Zﬂt_lR(wt(Q(t)),Q(t)) | Q(1)|. (5)
when the channel is modeled with more thastates. T t=1

Any admissible policy can be written as= [y, 72, ..., 7],

IV. OPTIMALITY OF THE MYOPIC POLICY wherer, maps€(t) to an actiona(t); t = 1,2,...,7T. Here,

A myopic policy is one which maximizes the immediatgolicies are indexed by since the optimal policy for a finite
reward alone, rather than the long term reward. It is obligio horizon problem is, in general, non-stationary.
to the impact of current action on future rewards. In this \We define thevalue functionl; (£2(¢)) of the optimal policy
section, for a 2-states channel with perfect CSI on the tsdecat time+t as
AE and positively correlated channels, we show that the

optimal policy is myopic. A pictorial representation of the Vr(£2)= max E[R(a,(2)] (6)
2-states channel model with state transition probalslitie Y

given in Fig.[2. A positively correlated channel is one where () = a:Hllf.lf(,NE [7(a, ) + BV (T())] (7)
the transition probabilities satisfy;1 > po1. This means that = max E[R(a,Q)]

in the next time step, the channel state has a higher pratyabil a=l,..N

to remain in the present state rather than to switch to theroth + Bwa(t + 1)V (T(2[S(a) = 1))

state. The FSMC model yields a positively correlated chinne + B(1 —wa(t +1)Veu1 (T(2|S(a) = 0)) (8)

for normalized Doppler frequencies as highlaa. Hence, the o . . )
channels are positively correlated for all practical psgm We Which is the expected sum reward gained, starting in belief
present the proof of the optimality of the myopic policy foet Vector (i), from time ¢ to 7. Here, 7() is the one-step
finite horizon case. However, it can be extended to the iefiniPdate operator of the belief vector, defined aslin (4). Also,
horizon case using standard techniqiies [47]. Unfortupates  Notational simplicity, we have dropped the time indexIn
extension of this result to channels with more than 2 states o L€t Fc(s) denote the probability of correctly receiving a

to the case with imperfect channel estimation does not seBgfket when the channel statesis {0, 1}. Then, the expected
to be straightforward. immediate reward collected is given by

The two §tates per antenna modgl allows us to simplify R(a,2) = waPo(1) + (1 — wa) Po(0) 2 f(wa). 9)
the formulation as follows. We redefine the belief vector at

time t as Q(t) £ [wi(t),wa(t),...,wn(t)], wherew;(t) = Since statel corresponds to a higher channel gain than
Pr(s;(t) = 1|Past actions and observatignse., the condi- state 0, the associated probability of correctly receiving a
tional probability that the channel is in the good state packet is higher for staté, and it is reasonable to assume
(denoted bys; (t) = 1) at time step, given all past actions and P.(1) > P.(0). Hence, f(w,) increases linearly withu,. A

observations. Note tha&®(¢) differs from b(¢), since, in the myopic policy chooses that action which maximizggv,, ).



Due to the linearity off (w, ), this is equivalent to choosing the The condition given above essentially requires that selgct
antenna with the highest belief state. Now, we define a pseutie AE corresponding to the last entry in the vectQ(t),
value functionW;(Q2), t = 1,2,...,T, as follows [48]. We followed by myopic selection be better than selecting ahgot

let Wp(2) = f(wn). Fort < T, we let AE followed by myopic selection. With the assumption of
optimality of myopic policy from timet + 1 onwards, this

Wi () = f(wn) + BlwnWiti(T(wr), ..., T(wn-1),p11)  condition ensures that the myopic policy is optimal for time

+(1 — wn)Wig1(por, 7(w1), ..., 7(wny_1))]. (10) t also. In order to prove that the above condition holds for

) ) ) the AS POMDP problem, we first prove the following. The
A few obseryatlons on the properties of this pseudo Vallﬂ)%eudo value functioni;(2(¢)), does decrease in value, if
function are listed below. we switch the order of two neighbouring AEsandi + 1 so
1) W(£2(t)) corresponds to the expected total discountes to makev; 1 > w; . This is established in Lemnid 1. Let
reward of a policy which chooses, at timethe AE A 2 f(1) = £(0) = P.(1) — P.(0). SinceP,(1) > P.(0), we
corresponding to the last entry§&(¢). If a 1 is observed have A > 0.
on the selected AE (that is, the channel is observed to B )
be in the good state), then it is selected for receivifggMma 1. For wi < wy < ... < wy, the following
the subsequent packets untiloais observed on it. As nequalities hold for allt = 1,2,..., T, whenpi; > por:
long as al is observed, the next belief vectOX(t + 1) ) A+ Wiwa,...,wn,wi) > Wi(wr,...,wy)  (14)

remains ordered such that the belief state of the selected ) Wiw WLy, W)
AE is the last entry of the vector, i.e., it is the channel P B Sty N
to be selected for receiving the next packet also. If the > Wi,y 2, Y, WN) (15)

observation i) (that is, the channel is observed to be ijyhere z > y, 0 < | < N — 2, and! = 0 implies

a bad state), then the AE is moved to be the first entyy, (y, z,ws, ..., wn) = Wiz, y,ws, . .., wn).

of the vectorf2(¢+ 1). Correspondingly, it becomes the ) ) )
last one to get selected. The ordering of the unobservede Prove this lemma using a sample path argument in

AEs are retained. This can be easily verified by notifgPPendix B. Next, we state and prove the theorem on the
the linearity ofr(-) and the assumptiop; > po;. optimality of myopic policy.

2) When the elements if2(¢) are ordered such thatTheorem 1. The myopic policy is optimal for the problem
w1 Swr < ... < wn, Wi(82(2)) is the expected total stated in [(6), fort = 1,2,...,T, andVQ = [wi,...,wy] €
discounted reward obtained by following the myopim 1]V under the assumption that; > po;.

policy from timet¢ to 7. This is because, at any time i , i i
Proof: The proof is by induction. At timeé = T, the greedy

fromt to T', the entries in the vectd®(¢) remain sorted o ) ; AR k X
policy is obviously optimal. Assuming it is optimal for time

in increasing order due to the monotonicity of-). h h imal . b
Since the AE corresponding to the last entry is alwa)fsfrl’t+2’ .-, T, 1o show the optimality at time, by Lemma

selected, which has the highest belief state, the poligyOf [47], it suffices to show
implemented by selecting the antenna corresponding oW, (wi, ..., Wi 1, Wik, .- W, wWi) < Wi(wi, ..., wy).
the last entry in€2 turns out to be the myopic policy. (16)

3) It can be shown that the followingecomposability By applying [I%) repeatedly to the above equation
property holds for all € {1,2,...,N}. The proof is

by induction, and is relegated to Appendix A. Wiwr, ooy wimt, Wi, - W, W)
W( ) SWt(w17-"7wi—lawi+la"'1wiawN)
tlwi, ..., Wiy .., WN
’ ’ ’ ’ §Wt(wl,...,wi_l,wi+1,...,wi,wN_l,wN)

=wWi(w,...,1,...,wN)
1 —w)W, 50, . 11
+( Wl) t(wh 5 Uy 7(4)]\/') ( ) SWt(w17---7wN)- (17)

We can further extend the above result to show that This completes the proof of Theordh .

Wit oo s ey ) — W1, ey @Yy ) The myopic pohpy explalned above has an interesting

B W 0.1 structure to it. It sticks with an antenna if a 1 is observed

= (@-yWi(ws,...,0,1,...,wn) on it, otherwise discards that antenna and picks the one with
= Wi(wi,...,1,0,...,w,)]l. (12) the highest probability to be in state 1. The optimality oftsu

We will use the above result in the proof of Lemfda 1 in th8 policy is intuitive. There are only two states and if an ante
In state 1, it is most probable to stay in state 1 in the nex¢ tim

sequel. A necessary and sufficient condition for the opiignal . .
of the myopic policy is given in Lemma 2 of [47]. It says, to> cP due to the assumptig: > po1. On the other hand, if -
show the optimality of the myopic policy at tinte given its the antgnna is in stgte 0, it has the lowest propablhty tonbe i
optimality att + 1,..., T, it suffices to show that sta_te 1 in the next “”_‘e step._Hence, by fol_lc_)wmg th(_a myopic
policy, the antenna with the highest probability to be irtesth

Wilwi, .oy wic1, Wik 1, -y wN,wi) < Wi(wr, ..., wn). is selected for receiving the next packet. However, in a ggne
(13) set up with more number of states per antenna, the optimal
forallw; <...<w; <...<wn. policy is not straight-forward.



L T follows. In theMax pi cki ng scheme, once an AE is used
P ‘ ‘ P ‘ Py ‘ ‘ & d ‘ to receive a packet, we update the CSI of this AE with the
channel gain estimate obtained from the DM RS in the packet.
AS training phase Data phase We compare this new estimate with the outdated estimates of
Fig. 3. As training phase followed by the data phase. other AEs, while selecting AE for receiving the next packet.

Similarly, in the modified weighting scheme, the CSI of the
selected AE is updated using the DM RS information. For
selecting AE for the next packet, the weighting is done on
We now briefly discuss the relative merits and demeritae updated estimate for the selected AE and the outdated
of the proposed POMDP approach compared to the existiagtimates of the rest of the AEs. The weight calculationgake
approaches from the literature. We also present two némto account the delay in the estimates, in the same manner
heuristic schemes for AS inspired by the existing approsichess was done in the original scheme. In addition to this, the
and the proposed POMDP based approach. Finally, we preseiminnel gain estimate from the DM RS is used to decode the
a computational complexity analysis of the various schemedata in the packet, for both the modified schemes.
Recall that the POMDP formulation requires the
A. Existing Schemes continuous-valued channel gains to be discretized into

a_finite number of states for the purpose of solving the

Ofgze:gf:;?gi:;hpehrggz fZLoAvina;?ctgoer?z;Sl Iilz Ib:eg ?hghi SMDP and determining the optimal policy. Due to this, the
' o information available from the received pilot symbols it no

trammg phase comprises of pilot SymbOISM’pQ’”"pr' Fully utilized by the receiver, especially when the number
The pilot symbols are followed by several data packets; we [ : BiThis wi ) :

d; denote thei™ data packet. The receiver obtains estimaté)sf states per antenna is sniallThis will be illustrated in
: ‘ in the simulation results if_Secfion VI, where we plot the

of the channel gains of each AE from the pilot symbols in .thngR versus the normalized Doppler frequency. However

training phase. These estimates are used in selecting ARs in o o
. . the heuristic schemes proposed above based on the intuition
data phase. It is assumed that the receiver requests the trap i . .
: s . : eaned from the POMDP utilize the DM RS information
mitter for a training phase, when the resulting PER is belo :
not only for data decoding but also for AS, and recover the
someacceptabldevel [24]. In[subsection VI-B, we compare )
X X erformance loss of the POMDP solution[Tn subsecfion VI-C,
the performance of the POMDP solution with two approaches ~. -
. ) N e will show that the two heuristic schemes presented above
from the literature: the weighting scheme proposed(in [2 - L e
S tperform the existing weighting and max picking schemes
and theMax pi cki ng scheme. In both these schemes, th ) . . .
. . . - escribed in the previous subsection.
channel gain estimates obtained from the training phase are
used for AS as well as for data decoding, i.e., the additional

CSI obtained from the DM RS is not exploited. In tMax C. Computational Complexity

pi cki ng scheme, the channel gain estimates of the AEs|n this subsection, we discuss the computational complexit
from the AS training phase are compared, and the AE wil} the different AS schemes discussed above. We focus on
the highest estimate is selected for receiving _the pacl_retsthe complexity in using the policy suggested by the POMDP
the data phase. The scheme proposed_in [26]is to weigh fl&nning, and not on the computational cost of solving the
estimates from the AS training phase, and select the AE WisHMDP. This is because the POMDP can be solved offline,
the highest weighted estimate to receive a symbol. The &ighnd only needs to be repeated when the channel statistics
are chosen to minimize the symbol error probability at ti@wange, i.e., only very rarely, compared to the AS process.
receiver, accounting for the fact that the channel estimate | gt ,; denote the number of states per antenna andViet
different antennas are outdated by different amounts 0é.limjenote the number of antenna elements, as before. The total

In order to compare the PER performance of this scheme Wi{limper of channel states is then given&y= x~. We make
that of the POMDP solution, a per-packet selection is done e following remarks about the complexity:

this paper. Both the above mentioned schemes depend solely SARSOP policy: The output of the SARSOP tool is a set
on the estimates from the training phase for selecting AEs. of vectors deno'ted by, which represents a piecewise-
We compare their performance with that of our scheme which linear app'roximation of,the optimal value function. Each

utilizes the DM RS information in AS decision making. We vector is associated with an action. At each time step, the

V[\)/:\I/I| SF?;)W tthat, by taltqng the mftc))lr mtatlo_n o_?tam;eld _througnle tth inner product between these vectors and the current belief
AS f|n 0 accom_Jrn %W(_el_tarte aple to significantly "”_”dpm;e e vectoris computed. The complexity of this computation is
Eetr _ordmance. (:hl?(;:t:‘l a elf(?[mﬁarlfr?n,p\\/vsetco_nsl erh g |A|O(K). The optimal action is the one corresponding to
packet index, €.g., packet after the raining phase, the vector inA is most correlated with the current belief
and illustrate the effect of utilizing the DM RS, as opposed t
using only the AS training phase, on the PER performance. 3A way to overcome the loss of optimality in quantizing the rhel
into discrete states is to increase the number of states om aatenna;
however, this drives up the complexity of finding the optirsalution. Also, a

B. Heuristic schemes limitation of the FSMC model i [39] is that it restricts the@te transitions to

. . o ppen only between adjacent channel states, and thigsaffex optimality
In this SUbseCt|0n_' We. present two heu.”St'_C schemes for Aﬁthe policy vis-a-vis the behavior of the channel when thenher of states
based on thé&/ax pi cki ng and the weighting schemes, asecomes large.

V. DISCUSSION



vector. The complexity of finding the maximum amonghe signal power. We assume that there afe= 4 AEs,

|A| values isO(|A]). The last step of the algorithm is toand that the noise at the receiver is AWGN. We fix the
update the belief vector by multiplying it with the statenormalized Doppler frequency is fixed f,Tp = 0.02. The
transition probability matrix. This incurs a complexity ofpilot symbols are transmitted at the same power as the data
O(K?). symbols.

o Myopic policy: In this case, at each time step, the The channelis Rayleigh faded with time correlation dialate
immediate reward corresponding to each action is calcby the Jakes’ spectrum, and is independent across AEs (see
lated. This involves computing the inner product betweemn later subsection for a simulation result that incorparate
current belief vector and the expected immediate rewas@atial correlation in the channel). We generate a largeoeum
o(a, S), which has a complexity oNO(K). Then, we (10,000) of time-correlated Rayleigh fading channel traces
find the maximum among th® inner product values, the generated using the algorithm given[in[49]. For each traee,
complexity beingO(N). The final step in the procedurestart with an AS training phase followed by data transmissio
is to update the belief vector, similar to the SARSORia packets. We perform receive AS using the different al-
policy, which has a complexity of(K?). gorithms, and collect the statistics of packet successréai

« Weighting scheme: This scheme involves multiplying thef each packet index separately, and average it across the
channel gain estimates from the AS training phase witlifferent channel traces. This way, we arrive at the PER
the weight vector, incurring a complexity 61(V). Note corresponding to each packet index. We plot the performance
that, as the weight vector computation can be performéat the 10" packet. We repeat this process for different SNR
offline, its complexity is not included in this analysisvalues, different number of receive antennas, differemntimer
Finally, we choose maximum from thes€ weighted of states in the FSMC, and different AS algorithms.
gains. The complexity for this i©®(N). The POMDP problem is formulated as explained in

o Max pi cking: This schemes simply picks the maxi{Section Il. We consider POMDP models where the number
mum among theV channel gains obtained from the ASof states per channel 5 4 and8. For each POMDP problem
training phase. This has a complexity ©{N). All the we find two solutions: as given by the Approximate POMDP
packets are received using the same antenna. Planning Toolkit [31] and the myopic policy. We plot the

« Modified schemes: In the modified schemes, the chanm@rformance of POMDP in two cases: when there is perfect
gain estimate of the selected antenna is updated usi@§l on the selected antenna, and when the CSI is estimated
the DM RS information. Its complexity is similar to theon all antennas.
corresponding schemes discussed above.

From the above_ discussion, we see that the POMDP ba .dComparison with Existing Schemes
solution has a higher complexity than the other schemes. The

complexity increases with the number of quantized states.In this subsection, we compare the performance of the
Between SARSOP policy and myopic policy, the former hddOMDP solution with the AS training based on the weighting
higher complexity a$A| is typically much greater thaft for scheme proposed in_[26]. Another scheme that is evaluated
a “good” policy obtained from the SARSOP tool. Due to thigs Max pi cki ng, which picks the antenna with the highest
the computational complexity of the SARSOP policy may néstimated channel gain in the AS training phase. We also
scale well for large dimensional AS problems. On the oth&valuate the PER in case of a single A ( AS). Per f ect
hand, the myopic po||Cy offers a good Compromise betweéﬁl denotes the PER curve with a genie-aided receiver that
complexity and performance, and would be the candidate s perfect CSI on all antennas. Except for the POMDP, all
choice as the number of antennas gets large, for examplethg schemes deal with continuous-valued channel gains. We

massive MIMO systems. present comparisons of the PER performance of the different
schemes as a function of the data SNR, normalized Doppler
VI. SIMULATION RESULTS frequency and packet index.

In this section, we present Monte Carlo simulation results 1) Variation of PER with SNR:The performance of the

to support the analysis and discussion in the previousoexti optimal policy as obtained from SARSOP tool and myopic
PP Y P policy for the 2-states channel model is plotted in [Elg. 4 and

. ) those for the 4-states model is plotted in Hi§. 5. For the 2-

A. Simulation Setup states model with perfect CSI on the selected antenna, wee hav

In order to evaluate the performance of the proposatiown the optimality of myopic policy. Hence, in the 2-state
schemes and compare with existing training-based A®&se, the myopic policy marginally outperforms the SARSOP
schemes, we simulate an initial training phase, followed policy, as expected. In the 4-state cases, the results diew t
transmission of several data packets, as shown in[FFig. 3. ke myopic policy performs very close to the SARSOP policy,
haveT, = Ty, and we assume that the channel stays constavttich is again expected, since the SARSOP tool yields a near-
for the durationTpy, for all the simulations. In case of theoptimal policy, and the optimality of the myopic policy isto
POMDP, the information from the training phase is used tealid in this case. However, in all cases, the performante di
compute the initial belief vector. Each packet consistseof t ference between the myopic policy and the SARSOP policy is
data symbols and one DM RS. The data symbols are dramarginal, indicating that the computationally simpler i
uniformly at random from an 8-PSK constellation, scaled byerformance achieves near-optimal performance. The diama
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Fig. 4. PER vs. SNR for tha0™ packet for2-states channel model with

m Tpkt = 0.02.
I Tpia Fig. 5. PER vs. SNR for th20™ packet for thet-states channel model with
fmTpi = 0.02.
improvement in performance of our proposed scheme is d e A~
to its effectiveness in utilizing the DM RS for data decodin ——No AS
i ighting scheme i
as well as for AS decisions. The other schemes are who ; i el

dependent on the channel estimates from AS training ph: M/-*-smsop (Optimal) policy

—8— Myopic policy
- © - SARSOP (Optimal) (infinite pilot SNR)
- B- Myopic (infinite pilot SNR)

for AS as well as for the data decoding. These estimates s
getting outdated as the data packets are received, while
proposed scheme updates the channel estimates from the
RS pilots available in each packet. In Aig. 5, the other se®m
performance are not shown; they are unchanged because 1
do not discretize the channel state. However, the perfocmar
with Per f ect CSI is plotted for comparison.

2) Variation of PER with Normalized Doppler Frequency
Here, we plot the PER of different schemes as a function E
normalized Doppler frequency{, Tpi). In Fig.[8, we plot the Normalized Doppler frequency
performance of 2-states channel model along with the otf.c.
scheme_s. At lower normalized Doppler f_requencies, the- op,giig. 6. PER vs. normalized Doppler frequengy (T for the 10%
mal weighting scheme and théax pi cki ng scheme out- for 2-states channel model with data SNR& dB.
perform the POMDP solution. This is because these schemes

have the advantage of comparing among the continuouse/alue ) o
channel gains whereas the POMDP solution has to deal emes. The other schemes necessitate the transmission of

belief vector of a finite state channel model. However, 4€Sh AS training phase after, say, the"" packet, since the
the f,,Tp increases, the channel varies considerably wifAER becomes close to 1.
time, and the other schemes fail to track the variation. ldenc
they perform worse than the POMDP solution. In Fig. 7G. Comparison with Heuristic Methods
where there are 4 states per channel, the POMDP solutiorwe now consider the performance of the heuristic schemes
performs better than the 2-states model. Nee AS scheme for AS proposed it Section]V. In Fig. 110, we plot the PER as
has only one AE, and hence, performs the worst, even at lovgefunction of normalized Doppler frequency for the heucisti
normalized Doppler frequencies. schemes, and compare it with the POMDP solution. For the
3) Variation of PER with packet indexdere, we plot the sake of simplicity, in case of the POMDP, the performance
variation in the PER as a function of the packet index for thaf the myopic policy is plotted. The overall performance
different schemes. The SNR is fixed at 20 dB afydlk at of both the modified schemes is superior to that of their
0.02. Figs[B and]9 give the performance of the 2-states armlinterparts in the literature, as they utilize informatfoom
4-states channel model, respectively. Starting from th& fithe DM RS in addition to the initial AS phase for finding
packet itself, the POMDP solution performs better than thbe best AE. In fact, the modifie¥ax pi cki ng (labeled
other solutions. This is because the POMDP solution usksd. nax pi cki ng) outperforms the POMDP solutions
the DM RS to track the channel state of the selected ARwith the 2-states and 4-states channel models) at the lower
which is not incorporated by the other schemes. As one gé&sppler frequencies. This is because the POMDP discretizes
farther away from the AS training phase, the performance géthe channel gains. However, as we increase the number of
progressively worse. However, the degradation in perfogea states to model the channel in the POMDP, the performance
is far lower for the POMDP solution compared to the othes improved. The POMDP solution for 8-states channel model

PER of the 10" packet

packet
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Fig. 10. PER vs. normalized Doppler frequency for the héorimethods
for the 10! packet with data SNR 20 dB.

performs as well adod. nmax pi cki ng. A difference be-
tween the POMDP approach and the heuristic schemes is that
the POMDP approach accounts for the evolution of the belief
states of the non-selected antennas also, while in thedtieuri
scheme, only the selected antenna’s channel gain is updated
Note that, the relative performance of the different schreme
depends on a variety of factors including the pilot SNR, data
SNR, doppler frequency, number of receive antennas, etc. In
the typical settings considered in this simulation resuét,see

that the performance of the modified weighting scheMad(

wei ghti ng schene) degrades faster than that of the other
schemes. The reason is that, the original weighting scheme
[26] assumes that the channel estimates from the AS training
phase are used for both data decoding and AS. However, in
the modified scheme, we obtain a new estimate of the channel
on the selected AE from the DM RS, which can be used
for data decoding. Also, the weighting schemelinl [26] is no

Fig. 8. PER vs. packet index fa-states channel model with data SNR =|onger optimal since the additional CSI is not exploitedeTh

20 dB and fo, Tk = 0.02.
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Fig. 9. PER vs. packet index fdrstates channel model with data SNRE

dB and fn Tpke = 0.02.

improved performance of the modified schemes compared to
the existing weighting schemes underlines the importarice o
the DM RS in helping the receiver decide which antenna to use
in selecting the next packet, in terms of maximizing the long
term reward. In Fig[Jl0, for lower values of the normalized
Doppler frequency, the 2-states channel model gives worse
performance than the others. This is expected, since, with
more number of states, we can track a slow-varying channel
more accurately. However, as the channel varies faster, the
performance of 2-states model starts to outperform otfidis.

is partly an artifact of the FSMC model, which allows state
transitions between adjacent states only. Due to thaicgstr,

a channel model with fewer number of states is better suited
to represent a fast-varying channel.

D. Channel correlation

The system model considered so far assumed spatially
uncorrelated channels. It is well-known that correlatioroag
the channels degrades the PER performance of AS based
MIMO systems. Hence, it is of interest to study how the pro-
posed scheme performs in the presence of spatial cormelatio
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joint transmit-receive AS schemes based on Markov decision

—+——¢  theory.
10" i APPENDIXA
PROOF OF DECOMPOSABILITY OF THE PSEUDO VALUE
FUNCTION

!
)

—+— No AS

We are interested in proving the following for all =
1,2,....,Tand alll € {1,2,...,N}.

—»— Weighting scheme in [18]
—&— Max picking
—©— SARSOP solution

PER of 101 packet
=
o
T

'
w

10 "5 —&— Myopic policy 5 Wi(wr, ..., wi, ..o, wWN)
- - - SARSOP (infinite pilot SNR) >
- =D = Myopic (infinite pilot SNR) i 1 - let (wh ceey 1, cee 7WN)
_4| | —H&— Perfect CSI
10™ ¥ +(1—wl)Wt(wl,...,O,...,wN). (18)
0 5 10 15 20 25 30
SNR in dB

The proof proceeds by induction. The result obviously holds

for t = T. Assuming it holds fort + 1,...,T also, [I8) can
Fig. 11. PER vs. SNR for the0™" packet for2-states channel model with

fmTpke = 0.02 and spatially correlated channels with correlation coieffic be proved as follows. Consider the case Wh@i’]N. We can

= 0.6 between adjacent antennas. expand the LHS as given below:

Wi (Q(t)) = f(wn)+BwnWigr(T(wi), .-, T(Wi), -+, p11)
The system model remains the same as explained in[3ec. Il, + 8(1 —wn)Witi(por, .-, 7(wr), .., T(wn-1)). (19)
except that_thé\f chgnnels are now cgorrelate]g. \lNe assume thﬂrt)w, expanding the first term in the RHS BF118) and applying
the cprrelatlon matr|)§ has entrlé_zsp,p ey .onthe first the induction hypothesis we have
row, i.e., the correlation coefficient between adjacentmnas
is p. The POMDP formulation also remains the same as before 1y, (wy, ..., 1,... wy)
except that the state transition probability £4S;) needs to .
account for the spatial correlation between the antennié®rO = wilfwn) + Box Wi (rwr), o pu,-opu)
than using the modified state transition probability matrix B —wn)Wegi(pors - Py T(wn-1)]
the POMDP solution remains identical to the one presented = w; f(wn) + Bwipi1 [wWnWigi (T(wi), ..., 1, ..., p11)
above. In this experiment, we evaluate the PER performance +(1 —wn)Wita(pors .-, 1., T(wn-1)]

of different schemes under spatially correlated channéis w
p = 0.6. For the POMDP formulation, we have considered + Bwi(1 = p11) [wnWiga (7(w1),.--,0,. .., p11)
the 2-state model. The result is shown in FFig. 11. We see that, +(1 = wn)Wiega(por, - -, 0, 7(wn-1)] . (20)
compared to the uncorrelated case in Eig. 4, the performangigijarly, we expand the second term in the RHS[G (18), to
of all schemes has degraded, but the relative performanceygt
the different schemes remains more or less unchanged.

(1 —w)Wi(wr,...,0,...,wN)

VII. CONCLUSION = (1 —w) [f(wn) + BwnWipr(T(w1), .-+, Po1s - - -, P11)

. . . L 1-— W, N P _
In this work, we considered a wireless communication +A( wn)Weta (por po1 T(wn-1)]

system with a receiver having single RF chain ahd\Es. By = (1 —w)flwn)
formulating the problem as a POMDP, we were able to exploit ~ + 8(1 — wi)po1 [wn Wi (T(w1),...,1,...,p11)
the temporal correlation of the channel as well as the autditi +(1 = wn)Wig1 (ot -, 1, ..., T(wn—1)]

information available in the DM RS. We showed the optimality

of the computationally simple myopic policy for the 2 state + B(1 = w)(1 = po1) [wn Wit (T(w1), .-+, 0,...,p11)
channel model under the assumption of perfect CSI on the (1 —wn)Weri (P11, -+, 0, T(wn-1)] - (21)
selected antenna and positively correlated channels.ughro Combining [20) and[{21) and noting the fact theto;) =
simulations, we showed that the performance of the myopi¢, ., + (1 — w;)po1, we get

policy is very close to that of the optimal policy obtained

from the SARSOP POMDP solver, even for the 4-statesw;Wi(wi,...,1,...,wn)+ (1 —w)Wi(wi,...,0,...,wN)

channel model. We also proposed two heuristic policies that — r(,\) + B7(w;) [wnyWisr (T(w1), ..., 1, ..., p11)
offer excellent performance and are simple to implemeng Th (1= wn)Wisa ( 1 Hon1)]
primary advantage of our proposed approach is that it obwiat NJWEH1POL, - -5 2y o5 TIWN -1

the need for frequent AS training phases. This reduction in + 81 = 7(w)) [wnWega (7(w1), .., 0,... . p11)
training overhead can translate to improved spectral effiy, +(1 —wn)Wir1(pot, .-, 0,...,7(wn—1)]

or allow transmission at lower power to improve the energy  — f(un) + 8wy Wigt (T(w1), ..., 7(wi), - ., p11)

efficiency and reduce interference to other systems. Future
work can include the analysis of optimality of the myopic
policy for a generak-state channel model, and the design of =Wiwi,- o wi,wn). (22)

+(1 — WN)Wt+1(p01, .. .,T(wl), L. ,T(wN_l)]
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This proves[(1B) for the case whégt N. Now, consider the  3) Case 1.c:The states of AE 1 andV are both 1.
case, wheri = N, and expand the LHS of (18), to get
P £08). 10 g Lipgy=A+f(1) 4+ Wi (t(wa), ..., T(WN-1), P11, P11)

Wi(Q(t)) = flwn) + BwnWipi(T(wi), - .- p11) Rl = f(1) + Wiy (P11, 7(w2), - - -, T(WN—1),P11)
+ B(1 —wn)Wig1(pot, - -, T(wn—1)). (23) < f(1) + Wi (T(w2), ..., T(wN-1),P11,P11)
Expanding the RHS of(18), when= N, gives the following =Llpy -4
terms: < Ly (29)
where the first inequality is due to the repeated application
WNWt(wlv - s WN-1, 1)

the induction hypothesis of (IL5) and the last equality is due
=wn [f(1) + Wia(T(w1), ..., T(wn-1),p11)], (24) to the assumption thak > 0.
4) Case 1.d: The states of AE 1 andV are 1 and O

(1 — wx)Wilwrs .., wn_1,0) respectively.
= (1 —wn) [f(0) + BWis1(por, T(w1), ..., T(wn—1))].  Llpo =24+ f(1)+ Wi (r(w2),..., T(wN-1),Po1,P11)
(25)  R|j1,0) = f(0) + BWit1(por, 11, T(w2), - . ., T(wN-1))
Noting that f (wy) = wx f(1) + (1 — wy)£(0), it is straight < f(0) + Wi (por, 7(w2), - -+ T(WN—1), p11)
forward to verify that combinind (24) an@(25) gives the RHS < F(0) + BIA + Wi (T(wa), ..., T(wN—1), P11, P01)]
of 23). < f(0) + A+ BWiga(T(wa), - -+, T(WN—1), Po1, P11)
APPENDIX B = U= 4
< Llj,o (30)

PROOF OFLEMMA [II

The two inequalities in the lemma will be proven togethe\'lyhtire .thef%sé a?g third mdequallty l%sesﬂ?he 'E?U(.:t'g;mhy'
by induction. For timet = T, equation [(I¥) becomeA + pOthesiIS 0 )- The second inequality utilizes the in

. . : . hypothesis of[(14).
w1) > f(wpn). This is true, since\ is the maximum value . .
;ij\f))_—ff((w]j)) can take. In[{T5), for ime = T and when Now we proceed to prové (IL5) for time We consider two

I = N—2,we havef(z) > f(y) sincex > y. Whenl < N-3, ca;escas glger!lb<ek])\\]/v. 3
we have the equality. Assuming both{14) ahd] (15) are true ) Case 2.a:l< N 3.

fortimet+1,t+2,...,T, let us first prove[(14) holds far.  LHS = f(wy) + BwunWig1(7(wi), ..., 7(y), 7(z), ..., p11)
The second ter_m in the LHS df_(14) corresponds to the case, B — W) Wit (001, 7(@1)s -+ o, 7)), T(@)s - ., T(wn 1))
when antennd is selected and the RHS to that when antenna

N is selected, at time. A sample path argument similar to = Flon) + Bon Wi (r(wi), . 7(2), 7(y), -, p1a)

the one in[[50] is adopted in our proof. We consider all the + 8(1 — wn)Wit1(po1, 7(w1), .-, 7(2), 7(y), ..., T(WwN-1))
four realizations for AEsl and N and show that[{14) holds = RHS (31)
in all cases.

1) Case 1.a:The states of AEl and N are 0 and 1 where the inequality is due to the induction hypothesi§ 8j.(1

respectively. Let us denote the LHS and RHS[afl (14) under

this realization ad.|(o 1) and R|p,1}, respectively. We have 6) Case 2.b:l = N — 2. From [12), we have

Lljoa) = A+ f(0) + BWis1(por, T(w2), - - ., T(wn—-1), P11) We(wi,. o wn-2,9,2) = Welwy, ..., wn—2,2,9)
(26) = (z —y) We(wr,...,wn-2,0,1)
R0 = f(1) + BWiy1(por, T(w2), . .., T(WN—1),P11))- —Wi(w1, ..., wn—2,1,0)]. (32)

27) Expanding the last term on the RHS,
The last summation term in both the above equations iEV
evidently the same. Noting that in this particular real@at (w1
f(0) + A = f(1), we haveL| 1) = R|jo,1)-
2) Case 1.b:The states of AEL and N are both0.

Lljo,0) = A+ f(0) + BWi11(po1, T(w2), - - -, T(wN-1), po1)
Rlj0,0) = f(0) + BWiy1(po1, po1, T(wa), - .., T(wn—1))
< £(0) + BIA + Wit1(por, T(w2), - - -, T(WN—1), Po1)]
< F(0) + A+ BWii1(por, T(w2), ..., T(wn—1),po1)  The first inequality is due to the induction hypothesis[of)(14
(28) and the second inequality is due o< 1. The last inequality
is due to the induction hypothesis 6f{15) and al$6) + A =

where the first inequality is due to the induction hypothesis f(1). Sincex > y, (32) evaluates to a positive quantity. This
(I4). The second inequality utilizes the fact titak 1. completes the proof Lemnia 1.

., wN-2,1,0))

+ BWiy1(por, T(w1), ..., T(wn—2),p11)

+ B(A 4+ Wiy (1(wi), ..., T(wN—2),p11,P01))
+ A+ BWipi(t(wi), ..., T(WN—2), P11, Po1)

1) + Wiy (T(wi), ..., T(wN—2),Po1, P11)

(Wi, wN—2,0,1). (33)

Il
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