About Joint Stable User Association and Resource Allocation in Multi-Rate IEEE 802.11 WLANs

Mikael Touati1,2,3 \hspace{1cm} Rachid El-Azouzi2 \hspace{1cm} Marceau Coupechoux3

1Orange Labs \hspace{1cm} 2University of Avignon \hspace{1cm} 3Telecom ParisTech

Issy-Les-Moulineaux, France \hspace{1cm} Avignon, France \hspace{1cm} Paris, France

Eitan Altman4 \hspace{1cm} Jean-Marc Kelif1

4INRIA Sophia Antipolis, Sophia Antipolis, France

ABSTRACT

This paper aims at proposing an alternative approach for both the modeling of the IEEE 802.11 resource allocation scheme and the design of mechanisms to reduce the impact of the anomaly of the protocol. We use game theory to model the IEEE 802.11 resource allocation and mobile users to APs association as a coalition matching game. We propose a new mechanism that gives mobile users and APs the incentive to associate with each others in a way that both absorbs the load and reduce the negative impact of the anomaly in IEEE 802.11.

1. INTRODUCTION

It is known that the IEEE 802.11 protocol may lead to unpredictable or poor performances due to its anomaly at the MAC layer and the use of a stronger signal (best-RSSI) association scheme. In fact, the throughput both depend on the heterogeneity of the data rates of the nodes and the congestion of the medium. In this paper, we propose to use game-theory to model the resource allocation scheme induced by the IEEE 802.11 protocol and solve the association problem so as to reduce the impact of the anomaly and balance the load among the APs (according to some given fairness criteria). More particularly, we show that the IEEE 802.11 protocol and related modifications (proposed in the literature in view of reducing the anomaly) can be modeled as a Nash bargaining [1] over the resource. As examples, this includes the throughput fairness allocation in the saturated regime with equal packet sizes or the time-based fairness. Using recent game-theoretical results, we show that these allocation schemes guarantee the existence of some (core) stable [3] associations between the mobile users and the APs. We use matching games with complementarities and peer effects to reach the stable association. Finally, we propose a novel three-stages controlled coalition game (among selfish and throughput maximizing players) for the modeling and control of load balancing, resource allocation and user association. We show that our mechanism can reduce the negative impact of peer effects such as the anomaly in IEEE 802.11 and greatly improve the efficiency of 802.11 with heterogeneous nodes. Our mechanism can be used at the connectivity management layer to achieve efficient APs-mobile user associations without modification of the MAC layer.

2. MECHANISM

We now show our three-steps mechanism including (i) a Nash bargaining-based load balancing5 among the APs (ii) a controlled coalition game with Nash bargaining for resource allocation among the players in each cell (iii) a core stable matching algorithm. We show our three-steps mechanism in Figure 1. In the first step (block LS), APs perform a Nash bargaining over the users in order to share those covered by several APs. The resulting quantities are called quotas and should be enforced by the following steps of the mechanism. The second step (blocks Ω and Φ) is a controlled coalition game. The control of the game is designed so as to provide the players 6 the incentives to form coalitions of cardinalities given by the quotas. The fact that the players are both selfish and throughput interested naturally reduce their heterogeneity in the resulting association (thus reducing the impact of anomaly in the IEEE 802.11). The third step (block μ) is a decentralized matching game using a core stable matching algorithm [4]. This matching game results in a core stable structure induced by the individual preferences provided by the controlled coalition game. More details about the mechanisms are given in Figure 1. The proposed mechanism can be implemented as a virtual layer on top of the IEEE 802.11 MAC protocol. Mobile users and APs form coalitions based on the “virtual rates” provided by this virtual layer. Once associated, users access the channel using the unmodified 802.11 MAC protocol.

3. NUMERICAL RESULTS

In this section, we assume equal packet sizes and saturated queues (each node always has packet to transmit). In this case, the cell throughput is equally shared among the mobile users and AP in a cell (throughput-based fairness). The analytical expressions of the throughputs are taken from [2]. Figure 2 shows the two scenarios we consider in this paper. In the absence of any mechanism, the mobile users and APs

5The Nash bargaining achieves the proportional fair allocation in the utility space, see [1].

6By assumption, selfish and individual throughput maximizers.
4. CONCLUSION

Figure 1: Block diagram of the mechanism. Block LS shows the load balancing scheme (negociated quotas). Block Ω shows the control changing the original characteristic function v in the modified characteristic function ˜v. Block Φ shows the Nash bargaining for the resource allocation. Then, the players emit preferences over the coalitions on the basis of their shares and enter a stable matching mechanism in block μ. This block outputs a stable matching mechanism in block μ. In the block MAC, the nodes transmit their packets according to the unmodified IEEE 802.11 MAC protocol.

(a) Scenario 1
(b) Scenario 2

Figure 2: Scenarios 1 and 2. Two spatial distribution of APs (smallest red circles) and devices (black points). Circles show the coverage areas corresponding to different data rates.

(a) Stable matching result- (b) Global optimum matching from a Gaussian cost and ing with Gaussian cost.

BDAA.

Figure 3: Controlled matching game in scenario 1. Comparison of the association obtained from (a) BDAA, (b) the global optimum for Gaussian costs with variance σ = 0.2.

associate in a one-to-one form and a high number of mobile users may remain unassociated. This shows the natural incentives of the system with selfish players solely interested in maximizing their individual throughputs. Our mechanism changes the structure of throughputs in a way that provides the players (mobile users and APs) the incentives to associate with each others according to a many-to-one matching rather than a one-to-one. Figure 4 compare our approach to the best-RSSI scheme. The load is shared among the APs and the individual throughputs are multiplied by 3 to 5 in this scenario.

5. REFERENCES