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Abstract—Load balancing among the base stations in het-
erogeneous networks (HetNets) is essential for their successful
deployment. In this paper, we present a robust approach for load
balancing by adapting log-linear learning algorithms (LLLA). A
new distributed annealing learning algorithm (ALA) is proposed
to learn the parameter of LLLA by adapting successive reject
algorithm. ALA gives a new annealing schedule that describes
the evolution of parameter 7 of LLLA over a fixed horizon.
The performance of this new annealing schedule is compared
with commonly used annealing schedules in the literature such
as linear decreasing, log decreasing, and fixed parameter. It
is observed from simulations that the new annealing schedule
achieves lower global cost for a fixed time horizon compared to
that of other annealing schedules. For lower time horizons, ALA
with linearly decreasing 7 is better than ALA with a fixed vector
of 7. Whereas, for higher time horizons, ALA performance is
same in both the cases. Finally, we show the applicability of the
proposed algorithm for load balancing.

I. INTRODUCTION

Conventional homogeneous cellular networks are drifting
towards heterogeneous networks (HetNets) due to traffic de-
mand based deployment of small power base stations (BSs).
The idea is to share the load of macro base stations with
the small base stations. However, with the conventional user
association technique where the user selects a BS that provides
the highest received power, more users associate with macro
BSs. This leads to higher load at macro BSs and at the same
time under-utilisation of small BSs resources. Therefore, a
critical problem in HetNets is to associate users to BSs such
that the load between the BSs is balanced and small BSs
resources are utilised efficiently.

An overview of load balancing approaches in the literature
can be found in [1], [2]. These can be broadly classified
as centralised, e.g. in [3]-[6], and decentralised optimisation
approaches, see e.g. [7]-[11]. User-centric game theoretical
and learning approaches are becoming popular because they
provide distributive solutions, e.g. using congestion games [8],
[10], evolutionary games [9] and distributed Q-learning [11].

Recently, log-linear learning algorithm (LLLA) has been
proposed to achieve global optimum performance for load
balancing [12]. Load balancing is modeled as a potential
game whose potential function is an «-fair utility function
that captures network performance. LLLA and binary LLLA
(BLLLA) are proposed for complete and partial information
settings, respectively. In [12], cell range expansion (CRE)
technique is used where users associate with a BS that provides
the highest biased received power. A CRE bias is broadcast by
every BS and is typically higher for small BSs than for macro

BSs. This results in an increase of the small cell coverage and
thereby of the number of users associated with them.

Also in [12], the effect of parameter 7 of a log-linear
algorithm is presented. It is observed that with lower 7 the
algorithm may be stuck at a local minimum and higher 7
may result in unacceptable oscillations. LLLA converges in
probability to the global minimum when 7(¢) = m,
where x is the depth of the deepest local minimum of
potential function [13]. The value of x is generally unknown
before hand, especially in a distributed setting. Other heuristic
annealing schedules such as linear decreasing 7 and fixed 7
are used in the literature [14]. However, if the initial 7 is very
high then this annealing also takes a long time for convergence,
which is not suitable for load balancing. Therefore, a better
annealing schedule is required that is fast and guarantees
asymptotic convergence. This is the focus of this paper. We
propose a new distributed annealing learning algorithm (ALA)
to learn the annealing schedule of the parameter of LLLA
by adapting successive reject algorithm (SRA) [15]. This
annealing schedule is fast, performs better than other annealing
schedules, and guarantees asymptotic convergence.

The main contributions of this paper are as follows:

Robust approach for load balancing: We present a dis-
tributed annealing learning algorithm that gives a new anneal-
ing schedule of the 7 parameter of LLLA. The new annealing
schedule makes LLLA robust towards the effect of different 7
parameters. It makes LLLA more suitable for load balancing
in HetNets that use CRE for user association.

Numerical results: We first, present a numerical example
to show the behaviour of LLLA with different 7. Then, we
present the performance of ALA annealing schedule, log de-
creasing 7, linear decreasing 7, and with the smallest 7. Then,
we show that ALA outperforms other annealing schedules for
a given time horizon. For lower time horizons, ALA with
linearly decreasing 7 is better than ALA with fixed vector
of 7. Whereas, for higher time horizons, ALA performance is
same in both the cases. Finally, we show the simulations of
the proposed ALA for load balancing.

This paper is organised as follows. In Section II, the
system model is described and the problem is formulated.
In Section III, learning in a potential game framework is
presented. The ALA is described in Section III. In Section IV,
our approach is validated using extensive simulations. Finally,
the conclusions are given in Section V.
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Fig. 1: Optimal coverage regions obtained using optimal CRE
biases under correlated shadow fading.

II. SYSTEM MODEL

We consider an extended system model of [12] by taking
into account the auto-correlated and cross-correlated shadow
fading as shown in Fig. 1. In this figure, BS ¢ is a macro
BS and others are small BSs. The users at location x arrive
with a rate \(z) [arrivals/s/m?] and with an average demand
of 1/p(x) [bits]. The coverage regions of BSs are shown with
different colours. The downlink of a cellular network (typically
an LTE-Advanced network) is considered. The sets 3. and B,
denote the set of macro BSs and set of small BSs, respectively.
The set of all stations is denoted S £ B, U B,. Every BS i
maintains a CRE bias parameter ¢; € [1,. .., ¢max]- The CRE
bias vector is denoted € = [c1, ca, ..., ¢/

1) Channel Model: The received power at location z from
BS i is Pig;(z), where P; is the transmit power and g;(x) is
the channel gain, which captures the effect of path-loss and
shadowing. The effect of small-scale fading is not considered
because the time for user association procedure is assumed
to be much larger than the channel coherence time [7]. We
consider a scenario where the locations of the BSs and of the
users during their download are fixed. Therefore, the shadow
fading component is a constant multiplicative factor. Formally,
the channel gain model considered is [16]:

gi(gc):min{l,K|x—mi|7neﬁyi($)}, (1
2
where K = 4:[;0) , Ay 1s the wavelength, d is the reference

distance, x; is the location of the BS ¢, n > 2 is the path-loss
exponent, and e?¥:(*) is the shadowing component where (3 =
10%010 and y;(x) is a realisation of Gaussian random process
of zero mean and covariance function Cy, (Ax) [17]:

Cy,(Az) = U?hef%:, 2)

where afh is the variance, Ax is the displacement, and D,

is the decorrelation distance [16]. A constant cross correlation
between the y;(x) and y;(x) is considered as in [18].

The SINR ~;(z) of a user at location x is given as:

() = o n D 3
Zjes Pjgj(x) + No
where Ny = —174+410log W is thermal noise power in dBm
and W is system bandwidth in Hz.

2) CRE User Association Rule: A user association rule
based on CRE and maximum transmit power is commonly
used in the HetNets [1], [19]-[28]. According to this rule,
a user located at z is associated to the BS 7 that provides
the highest biased received power. The set of locations D; (&)
associated to BS 4 is defined as:

3) Traffic Model: BSs are modeled as M/G/1/PS queues as
in [7], [12]. The load of BS ¢ is given below.

_ M)
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(€) () P@)wi(w) (@20

where the data rate provided is v;(x) [bits/s]. A user is served
only if its SINR exceeds a minimum threshold 7. BS 4
is stable if and only if 0 < p; < 1. In this work, only
stable network configurations are considered. The load vector

is denoted as p = [pl,pg, e ,p‘5|].
A. Problem Formulation and Objective Function

The goal is to minimise an a—fairness function ¢,, (¢) over
a feasible set F, which are defined as [7], [12]:

o - {Egs
=2 ieslog (1 —pi(@)),
F =10 < p;(€) < 1,¢; € [1, emax], Vi € S} (7

a>0,a#1,
a=1,

(6)

The function ¢, (€) is in general non-convex and even if it is
convex the set F is non-convex because ¢ takes discrete values.
The function ¢,,(€) captures various aspects of fairness and
performance for the network depending on the choice of a.
Minimising ¢q(€) results in a rate-optimal policy. Minimising
¢1(€) is equivalent to achieving proportional fairness between
BSs [29]. Minimising ¢2(€) is equivalent to minimising the
average delay of the network. For more detailed discussion
refer to [7]. As @ — oo the minimiser of ¢,(€) tends to
the min-max load vector. It is a standard result with convex
objective function [7], [29], [30]. The proof for the non-convex
objective function is given in [12].

III. LEARNING ANNEALING SCHEDULE OF LLLA

In this section, we first present a potential game model for
user association and then describe LLLA. Next, we present
the learning algorithm for annealing schedule of LLLA.

Definition 1: [User Association Game] It is defined by the
tuple I' = {S,{Xi},cs.{Ui}tics}> S is a set of BSs, X; is
a set of strategies of BS ¢. Strategy set X, is a discrete set
of CRE bias values. Let denote a; and a_; as the strategy of



player ¢ and strategies of players except ¢, respectively. The
cost function U; is given below:

1-— i (Qis —; I—a
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where N; is the neighborhood of BS i and p;(a;,a—_;) is the
load of BS j given in (5).

It is proved in [12] that the game in Definition 1 is an exact
potential game with the potential function ¢, in (6). An exact
potential game has, at least, one pure Nash equilibrium (PNE)
and local optimizers of the potential function are PNEs [31].
A PNE of a game is reached when no player can benefit by
changing its strategy unilaterally.

A. Learning Algorithm for Annealing Schedule of LLLA

Algorithm 1 Log-linear Learning Algorithm

1: Start with arbitrary action profile a.

2: while ¢t > 1 do

3:  Set parameter 7 as a function of time ¢.

4:  Randomly select a BS .

5:  Compute cost U; (a;,a—;(t — 1)) for all a; € X;.

6: Forany a;, € X;, set U; (a;,a—;(t —1)) =oc0if p; > 1
for j € N;.

7. Take action a;(t) from X; with probability p}*(¢),

exp (—%Ui (az,a_;(t — 1)))
Yarex, exp (—7Ui(a},a—i(t = 1))
8:  All the other BSs must repeat their previous actions,

ie, a_i(t) =a_;(t—1).
9: end while

pi(t) = )

Algorithm 2 Annealing Learning Algorithm

.,T]\{},’r: %+Z£Vi2%

1: Initialisation: Let A; = {7, ..

2: for Phase k=1,2,...,M — 1 do
3:
1 T-M
= | —=————— 1
Lk S v (1o

and ng = 0.
4 for each i € A;, do

5 play LLLA with 7; for ny — nj_; iterations.
6: end for

7. Compute Ay = A\ argmax;¢ 4, )A(i’nk.

8: end for

LLLA is summarised in Algorithm 1. This algorithm is
similar to best response (BR) algorithm but allows deviations
from the best response with a probability, which is governed
by the parameter 7. It guarantees the asymptotic convergence
to the optimal NE of an exact potential game [12], [32]. This
means that, asymptotically, the probability that the algorithm
is at the global minimum approaches to one as 7 goes to
zero. The effects of 7 parameter on LLLA is shown using
simulations in Fig. 2. For high values of 7, LLLA results into

oscillations. This is due to the fact that the algorithms converge
fastly in probability to the uniform distribution. As a matter of
fact, it doesn’t spend much time in optimal states, which is not
practically desirable. For small values of 7, asymptotically, the
algorithms will spend most of the time in the global optimal.
However, convergence is slow in probability. This explains that
the system can take a long time to escape from sub-optimal
states. Contrary to best response, however, the LLLA does not
get stuck into sub-optimal states.

The annealing schedule describes the evolution of parameter
7 with some guarantee of convergence of LLLA. A logarithmic
decreasing 7 theoretically guarantees the convergence to the
global minimum [13]. However, this annealing schedule is
very slow and hence not practical for load balancing. A faster
linear decreasing 7 annealing is usually used in the literature.
However, if the initial 7 is very high then this annealing
also takes a long time for convergence, which is not suitable
for load balancing. Usually, a fixed value of 7 is used for
LLLA as a heuristic in the literature. However, choosing an
appropriate value of 7 itself is a challenge. Also, LLLA with
small 7 may be stuck into local minima for a long time.
An annealing schedule with quick convergence with some
guarantee is desirable. We propose to learn the annealing
schedule for a fixed time horizon. The idea is to explore the
given values of 7 and reject a 7 value whose average cost is
the worst compared to other 7 values. At the end of the time
horizon, the surviving 7 value is the best value to run LLLA.
The details of annealing learning algorithm are described in
Algorithm 2.

ALA is a successive reject algorithm originally proposed for
the best arm identification of multi-arm bandit problem [15].
We adapt SRA for LLLA to identify the best 7. The multiple
T parameters are multiple arms of SRA. Every BS runs this
algorithm distributively to obtain its own best 7 to run LLLA.
Consider a M number of 7 parameters of a wide range.
First, the algorithm divides the given time horizon (i.e., the
T iterations) in M — 1 phases. At the end of each phase,
the algorithm dismisses the 7; parameter with the highest
empirical mean cost, Xi,s = %Zle X+, where X, is the
cost obtained using (8) with 7; at time ¢. During the next phase,
it plays equally often each 7 which has not been dismissed yet.
The recommended 7 is the last surviving 7. The length of the
phases are carefully chosen to obtain an optimal convergence
rate for finite horizon as in multi-arm bandit setting [15].

The process of dismissing undesirable T parameters of ALA
provides an annealing schedule for LLLA. The performance
of this annealing schedule can be evaluated by computing
the probability of improvement achieved compared to other
annealing schedules. Improvement is measured in terms of the
achieved potential value from different annealing schedules.
Note that the ALA also guarantees asymptotic convergence to
the optimal NE of the user association game because at the
end of time horizon ALA runs LLLA with a single value of
7 same as in the classical LLLA [12].



TABLE I: Simulation parameters.

Parameter Variable  Value
Number of BSs N 8

Transmit power of macro BS Phacro 46 dBm
Transmit power of small BS Pyman 24 dBm
Average file size i 0.5 Mbytes
Average traffic load density % 64 bits/s/m?
System bandwidth w 20 MHz
Carrier frequency fe 2.6 GHz
Noise power N -174+10log(W) dBm
Minimum SINR Ymin -10 dB
Path-loss exponent n 3.5

Reference distance do 10 m

CRE bias set ci {1,2,...,16}

——1=10", Oscillations
—1= 10’3, local minima
- - -BR, local minima

10" —1=10%, global minima ||

10° I Vw1 n

100 200 300 400 500 600 700 800 900 1000
Iterations 't’

Fig. 2: Illustration of effect of different fixed 7.

IV. SIMULATION RESULTS

In this section, we show simulation results of the pro-
posed algorithm considering standard parameters as adopted
in 3GPP [33]. These parameters are listed in the Table I.
We consider 8 BSs located in a two-dimensional region L.
BS 1 is a macro BS that transmits with Pyaco and the rest
are small BSs that transmit with Py,.;. The user traffic varies
with location across an average traffic density of 64 bits/s/m?.
There are two hotspots where the traffic is 5 times the average
traffic. We consider shadow fading with a standard deviation of
osn, = 8 dB and a decorrelation distance of D, = 20 m. Cross-
correlation between the shadowing components at a location is
considered to be 0.5. We use the following classical Shannon
formula for calculating channel capacity v;(z) at any location
x:

vi(z) = Wlogy (1 +7i(x)) . (11

Fig. 2 shows the effect of different fixed 7 on the conver-
gence of LLLA. Oscillations are obtained for higher values
of 7 = 10'°. Whereas, for lower values of 7 = 10™3 local
minima is obtained. The best response (BR) algorithms get
trapped into local minima. The global minimum is obtained
for 7 = 102, In practice, finding a value of 7 that gives the
desired performance is very challenging.

The performance of ALA with 7 = [10'2,10'°,10%,10?] is
shown in Fig. 3a. In the first few iterations, a lot of oscillations
are observed. This is because of the high values of 7 used
by ALA to explore through all the given 7 parameters. As
the algorithm progresses higher values of 7 are rejected and
the algorithm progresses towards stabilisation. At the end, the
ALA runs LLLA with the surviving 7 and it converges.

The evolution of potential function obtained from LLLA
with the given smallest 7 = 100 is shown in Fig. 3b. LLLA
converges fast to some local minima and gets stuck into it most
of the time. Since, the time horizon is finite the behaviour of
LLLA with small 7 is same as BR because it does not have
enough time to escape from the local minimum.

The performance of a linear decreasing annealing schedule
is shown in Fig. 3c. Note that the initial value of 7 is the
highest value of the given set of 7 parameters. It performs
poor and results in a lot of oscillations that is not desirable. It
shows that linear annealing schedule is not suitable for load
balancing. We arrived at the same conclusion with the perfor-
mance of log-decreasing annealing schedule shown in Fig. 3d.

Now, we study the performance of ALA with different
functions of 7. Particularly, we study algorithm A1, which
is ALA with fixed 7 € [10'2,10%°,10%10%], and algo-
rithm A2, which is ALA with linearly decreasing 7 €
[10'2/t,10%/t,108/¢,10?/t]. The probability of improve-
ment of Al and A2 compared to various annealing schedules
is shown in Fig. 4. This probability is computed by averaging
over 1000 realisations. It is observed that improvement prob-
ability of Al and A2 compared to smallest 7 = 100 increases
quickly as the number of iterations increases and reaches unity
at 400 iterations. This shows both Al and A2 are certainly
better than LLLA with the smallest 7 after 400 iterations.
However, A2 is faster than Al. A1 and A2 are better than
LLLA with linear and log annealing schedules. Particularly,
they are better than linear and log annealing schedule more
than 70% and 60% of times, respectively.

The performance comparison of Al and A2 is shown
in Fig. 5. The probability curves in the figure are computed by
averaging over 500 realisations. The probability of Al being
strictly better than A2 is small in the beginning, decreases
with time, and becomes zero at 400. Whereas, the probability
of A2 being strictly better than Al is higher in the beginning
and then decreases to zero. The probability of Al equal to A2
is higher, in the beginning, increases with time, and becomes
unity at 400. Therefore, for low time horizons, it is better to
use A2. For higher time horizons, A1 or A2 can be used.

We now compare in Table II the optimal BS loads obtained
using Al for different «. As said earlier, the case with
a = 0 gives rate optimal policy, which is obtained when
all biases equal to unity. This is verified by the output of
ALA in Table II. This corresponds to the classical best signal
association rule that results in heavy load imbalance between
stations: the load of the macro BS reaches 92%, while small
BSs have loads less than 11%. Min-max policy is obtained
with a value of & = 50. A min-max load vector of BSs is
obtained as shown in Table II. Note that the load of macro
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BS is reduced to 45%. Corresponding coverage regions for
a = 50 are shown in Fig. 1.

V. CONCLUSIONS

A new distributed annealing learning algorithm for learning
the annealing schedule of LLLA over a fixed time horizon
is proposed. The LLLA with the new annealing schedule is
certainly better than with the fixed 7 parameter. Also, the
improvement probability of the proposed annealing schedule
increases with the iterations when compared to linear decreas-
ing and log decreasing annealing schedules of LLLA. For
lower time horizons, ALA with linearly decreasing 7 is better
than ALA with fixed vector of 7. Whereas, for higher time
horizons, ALA performance is same in both the cases.
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