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SUMMARY

Due to the increasing demands for higher data rate applications, also due to the actual spectrum crowd
situation, Dynamic Spectrum Access (DSA) turned into an active research topic. In this paper, we analyse
DSA in cellular networks context, where a Coordinated Access Band (CAB) is shared between Radio Access
Networks (RANs). We propose a Semi-Markov Decision Process (SMDP) approach to derive the optimal
DSA policies in terms of operator reward. In order to overcome the limitations induced by optimal policy
implementation, we also propose two simple, though sub-optimal, DSA algorithms: a Q-learning (QL) based
algorithm and a heuristic algorithm. The achieved reward using the latter is shown to be very close to the
optimal case and thus to significantly exceed the reward obtained with Fixed Spectrum Access (FSA). The
rewards achieved by using the QL-based algorithm are shown to exceed those obtained by using FSA. Higher
rewards and better spectrum utilisation with DSA optimal and heuristic methods are, however, obtained at
the price of a reduced average user throughput. Copyright © 2010 John Wiley & Sons, Ltd.

1. INTRODUCTION

Wireless networks are facing increasing demand for high
data rate applications, and hence their demand for spectral
resource increases. Researchers have started working on
Dynamic Spectrum Access (DSA) algorithms as a solution
to the spectrum scarcity problem encouraged by the rapid
progress in Software Defined Radio (SDR) systems that
enable the required reconfigurability for DSA and cognitive
radio equipments.

In Reference [1], the spectrum management models
are divided into four main axis: command and control,
exclusive-use, primary/secondary usage and commons.
The exclusive-use model includes a dynamic mode, where
spectrum is owned by a single operator at any given
point in space or time; owner and usage of the spectrum
can however dynamically change. This model is thus
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particularly adapted to cellular networks. In this context,
the IEEE P1900.4 working group has detailed three use
cases [2, 3] with increasing levels of reconfigurability and
joint management of resources. In this paper, we focus on
the first one and consider a single operator with several
Radio Access Networks (RANs), able to dynamically
distribute its frequency bands between its RANs.

Several papers are dealing with DSA for cellular
networks. For example, in Reference [4], authors propose a
coordinated DSA system where a pool of resources (CAB
or Coordinated Access Band) is shared and controlled
by a regional spectrum broker. In Reference [5], authors
made use of the genetic algorithm to analyse the DSA
in Wideband Code Division Multiple Access (WCDM)
networks. In Reference [6], authors propose a MAC
protocol enabling ad hoc secondary users to utilise the
unused resources of a GSM system.
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It is however difficult to separate technical from pricing
aspects when DSA is considered, especially for cellular op-
erators who pay very high prices for the license. The wide
interest in DSA is indeed mainly driven by the expected
benefits resulting from sharing the spectrum [7]. Acharya
and Yates [8] analyse a network model where the service
providers’ base stations are sharing a common amount of
spectrum. A distributed DSA algorithm is proposed where
each user maximises its utility (bit rate) minus the payment
for the spectrum. In Reference [9], authors have considered
a spectrum market, where they propose a Rubinstein–Stahl
method for the spectrum trading.

In this paper, we present an approach based on Semi-
Markov Decision Process (SMDP) to analyse DSA in a cel-
lular context. We analyse a network model, where different
RANs are sharing a CAB, inspired by the idea of resource
sharing as proposed in Reference [4] and by the single op-
erator use case presented in Reference [3]. We take into
account the spectrum price, and maximizing the operator
revenue is our main concern.

MDP approach has been used to solve several optimisa-
tion problems in telecommunication networks. In the con-
text of cognitive radio, Geirhofer et al. [10] propose a cogni-
tive medium access protocol that maximises the throughput
while limiting the interference affecting the primary user.
The authors formulated the problem within the framework
of constrained MDP. In Reference [11], a Partially Observ-
able MDP (POMDP) framework is proposed to optimise the
performance of the secondary users while limiting the in-
terference perceived by the primary users. These references
however focus on the primary/secondary usage model.

In Reference [12], the SMDP framework is used in a
Joint Radio Resource Management (JRRM) context in or-
der to take an optimal Call Admission Control (CAC) de-
cision, whether to accept a new coming call or to reject it.
The reward function in Reference [12] presents the end-user
throughput. Different from Reference [12], SMDP is used
in this paper to find the optimal spectrum bands allocations.
The reward function in this paper takes into account both
user satisfaction and spectrum price.

The paper is organised as follows: Section 2 presents the
network model in terms of system model, traffic model and
the principle of DSA operation. The SMDP approach is pre-
sented in Section 3. In Section 4, we propose a sub-optimal
DSA heuristic easier to implement for an operator than op-
timal policies. Section 5 proposes an alternative solution
based on Q-learning (QL). The performances of the three
approaches (optimal DSA, heuristic DSA and QL-based
DSA) are compared to the Fixed Spectrum Access (FSA)
case in Section 6. Conclusion is given in Section 7.

2. NETWORK MODEL

2.1. System model

We intend to study cell-by-cell DSA between two access
networks. RANs are supposed to be homogeneous in prop-
agation and in traffic, and the operator is assumed to deploy
classical frequency reuse schemes (i.e. reuse 1 or reuse 3).
Based on these assumptions, all cells of a RAN statistically
behave the same way, we can thus focus on a single cell per
RAN.

The system is thus made of two cells of two different
RANs (in this paper, terms cell and RAN will be used in-
differently). RANs do not have their own spectrum bands
but rather have to dynamically access to a CAB. The CAB is
sub-divided into mmax elementary spectrum bands (blocks)
that can be used indifferently by any RAN. As traffic grows,
a RAN can lease a new elementary band (one block) and
as it decreases, the RAN can leave it free for the common
pool (Section 3.3). We assume that the average data rate ac-
cessible by users in a RAN is proportional to the bandwidth
allocated to the RAN and is equally divided among all users
of the RAN (Section 2.2). The model is shown in Figure 1.
Parameters ni, i = 1, 2 are the number of active users in
RAN1 and RAN2. Parameter mi is the current number of
elementary bands leased by RAN i from the CAB.

Both RANs are operated by a single operator responsible
for attributing or freeing elementary bands to each RAN. On
the one hand, revenue is assumed to be proportional to the
satisfaction of the users. On the other hand, it is supposed
that spectrum cost follows the law of supply and demand:
as free spectrum diminishes, spectrum cost increases (Sec-
tion 3.2). We are interested in the optimal policy that assigns
bandwidth to the RANs.

Our model could be coherent with multi-carrier High
Speed Packet Access (HSPA) systems. According to 3GPP

Figure 1. System model: two RANs access to a CAB according
to their needs.
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release 8, an evolution of the HSPA systems will indeed
allow the aggregation of 5 MHz carriers [13].

Our model could also be coherent with Scalable Orthog-
onal Frequency Division Multiple Access (SOFDMA) cel-
lular networks (i.e. WiMAX, 3GPP-LTE), where the band-
width of the system is scalable [14]. In these systems the
operator has indeed an additional flexibility in resource al-
location through the possibility of scaling the bandwidth.

2.2. Traffic

We consider a bursty packet traffic such as web browsing or
file downloading on the downlink: a user alternates between
packet calls (several packets are transferred in a very short
time) and reading times (there is no transfer). In this paper,
we focus on the packet call level and so we neglect the
details of the packet level.

We assume Poisson arrivals of user downlink packet calls
with rate λ1 in RAN1 and λ2 in RAN2 (see Figure 1). Traffic
is supposed to be elastic: the packet call size is exponentially
distributed with mean XON bits in both RANs and so the
service rate depends on the available RAN throughput. We
assume a throughput fair scheduling between users of a
given RAN. For RAN i let Di be the cell data rate (in bits/s)
accessible with an elementary spectrum band. Then, the
service rates can be written as

µi = miDi

XON
(1)

An illustration of the traffic model is shown in Figure 2.
Arrows on the time axis represent Poisson arrivals of new
packet calls and grey rectangles their duration. Packet calls
are made of several packets that together represent XON
bits.

Figure 2. Assumed traffic model.

2.3. Dynamic spectrum access

In the considered system model, the core issue for the oper-
ator of the RANs lies in the trade-off to be found between
spectrum cost and revenues obtained from users: more spec-
trum per RAN means a higher lease cost for the operator
but also higher throughputs for users that are encouraged to
pay more for the service. As the CAB size is limited and as
spectrum cost increases with increasing demand, there is a
strong interaction between RANs.

In this paper, a DSA policy is a strategy that dynamically
attributes spectrum bands to each RAN from the CAB. We
assume that a DSA decision is taken at each new event, i.e. a
new packet call arrival or a packet call departure in any RAN
(see Figure 2). A DSA decision is supposed to increase the
number of spectrum bands for a RAN by a single block, to
decrease by a single block this number or to keep constant
the spectrum of a RAN. We thus do not allow too abrupt
changes in resource allocation.

We further assume that at least one spectrum block is
always available to each RAN, so that starvation is not pos-
sible. We are now interested in the optimal DSA policies in
terms of operator revenue.

3. OPTIMAL DSA POLICIES

In order to achieve this goal, we rely on the SMDP frame-
work. We first define the SMDP and the reward function,
then use uniformisation to obtain an MDP and rely on the
policy iteration algorithm to find the optimal DSA policy.

3.1. State space

The system state is given by all four tuple (n1, m1, n2, m2)
with constraints n1 ! nmax

1 , n2 ! nmax
2 and m1 + m2 !

mmax. The limitation imposed to the number of active users
is equivalent to setting a minimum throughput per RAN.
Let S be the state space.

3.2. Reward function

The reward function is based on the revenue expected by
the operator. The higher the satisfaction of users, the higher
the operator revenue; the higher the amount of bandwidth
leased by RAN, the higher the cost to lease this spectrum
band. We define a comfort service rate µcom. The revenue
obtained from a given customer in RAN i increases with its

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:694–703
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satisfaction:

φi(ni, mi) = Ku

(
1 − exp

(
−µi

niµcom

))

whereKu is a constant in euros per unit of satisfaction. Satis-
faction, defined in Reference [15], is an increasing function
of the user data rate and is without unit. As the scheduling
is fair in throughput, each user gets a data rate proportional
to µi/ni in RAN i. Thus, the total revenue obtained by the
operator in state s = (n1, m1, n2, m2) is

g1(s) = n1φ1(n1, m1) + n2φ2(n2, m2)

We assume that the spectrum price is increasing when
the amount of free spectrum decreases and we define it as

g2(s) = KB(m1 + m2) exp
(

−mmax − m1 − m2

mcom

)

where mcom is a constant that controls the variation of the
price and KB is a constant in euros per MHz (it is the equiva-
lent spectrum price per cell). If mcom is high, the exponential
function is close to 1 whatever the state. If mcom is small,
there is a high discount when the CAB is free. Note that
the price paid by the operator for a given elementary band
varies with the occupation of the CAB. The global reward
function per time unit can thus be written in state s as

g(s) = g1(s) − g2(s) (2)

Note that g(s) is defined per time unit because the longer the
spectrum is used, the more the operator pays. In the same
way, for a given throughput, the longer a user is using the
bandwidth, the more he has to pay.

3.3. Action space

In each state, the operator is allowed to increase, decrease
or leave unchanged the spectrum of each RAN. As shown in
Figure 2, a decision epoch occurs at each packet call arrival,
or departure. As state transitions occur only at the arrival
or the departure of a single user, we assume that the band
assigned to a single RAN can be increased or decreased by a
single elementary band. This leads to nine possible actions
of the form a = (a1, a2), ai ∈ {0, −1, +1} given in Table 1.

The effective action space depends on the state. If mi = 1,
the spectrum band of RAN i cannot decrease. If the CAB
is blocked, i.e. if m1 + m2 = mmax, no band can increase.

Table 1. List of possible actions.

Action a vector Action index

Band1 constant and Band2 constant (0, 0) 1
Band1 constant and Band2 increases (0, +1) 2
Band1 constant and Band2 decreases (0, −1) 3
Band1 increases and Band2 constant (+1, 0) 4
Band1 increases and Band2 increases (+1, +1) 5
Band1 increases and Band2 decreases (+1, −1) 6
Band1 decreases and Band2 constant (−1, 0) 7
Band1 decreases and Band2 increases (−1, +1) 8
Band1 decreases and Band2 decreases (−1, −1) 9

3.4. Transition probabilities

Let ps,s′ (a) be the probability that at the next decision epoch
(i.e. at the next transition), the system will be in state s′ =
(n′

1, m
′
1, n

′
2, m

′
2) if a is chosen in state s = (n1, m1, n2, m2).

Let 1/νs(a) be the expected time until next decision epoch
if action a is chosen in state s:

νs(a) = 1{n1<nmax
1 }λ1 + 1{n2<nmax

2 }λ2

+ 1{n1>0}µ1 + 1{n2>0}µ2

Transition probabilities are given by

ps,s′ (a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λi/νs(a) if (n′
i = ni + 1)

and (∀j m′
j = mj + aj),

µi/νs(a) if (n′
i = ni − 1)

and (∀j m′
j = mj + aj),

0 otherwise

(3)

3.5. Uniformisation

A step of uniformisation is now needed in order to trans-
form the continuous time Markov chain into an equivalent
discrete time Markov chain [16]. This is done by choosing a
sufficiently small transition step 1/ν (∀s, a, νs(a) ! ν) and
allowing self transitions from a state to itself.

Transition probabilities are modified in the following
way:

p̃s,s′ (a) =
{

ps,s′ (a)νs(a)/ν if s ̸= s′

1 −
∑

s′ ̸=s p̃s,s′ (a) otherwise
(4)

A DSA policy R associates to each system state s, an
action R(s) from the action space of s.

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:694–703
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3.6. Policy iteration

We are interested in finding the optimal policy R∗ of the
continuous-time average cost problem described above. For
that, we apply the policy iteration algorithm to the auxiliary
discrete-time average cost problem obtained after uniformi-
sation (see Reference [16], vol.2, p.315). The iterative al-
gorithm is now succinctly described, it iteratively solves
Bellman equations in a synchronous manner.

Algorithm 1 Policy Iteration
1: Initialisation: Let R be an arbitrary stationary policy.
2: Value-determination: For the current policy R, we

solve the system of linear equations whose unknowns
are the variables {JR, hR(s)}: hR(1) = 0 and

hR(s) = g(s) − JR +
∑

s′∈S

p̃s,s′ (R(s))hR(s′).

3: Policy improvement: For each s ∈ S, we find:

R′(s) = arg max
a∈A(s)

{
g(s) − JR

+
∑

s′∈S

p̃s,s′ (a)hR(s′)

}
.

4: Convergence test: If R′ = R, the algorithm is stopped,
otherwise, we go to step 2 with R := R′.

The SMDP approach has the advantage of providing op-
timal policies and an upper bound on the achievable reward.
The policy iteration algorithm takes into account not only
RANs loads, the number of active users and RANs interac-
tions but also the whole dynamics of the system. Optimal
policies are thus strongly dependent on the system parame-
ters and simple examples cannot be easily generalised when
the number of system states increases. In the next section,
we propose a sub-optimal DSA heuristic that overcomes
these limitations for an operator, while still providing a high
reward.

4. HEURISTIC DSA

4.1. DSA policies implementation

In order to implement optimal policies, an operator would
have to run the policy iteration algorithm for all possible
system parameter sets and store results to be dynamically
used according to the context. Running policy iteration on

a real-time basis seems indeed difficult, especially when
the number of system states increases (for example if many
cells or users are considered). The proposed DSA heuristic
intends to ease DSA implementation for an operator. With
this heuristic, massive storage of data is not needed and
computations can be done on the fly.

4.2. Proposed DSA heuristic

Optimal DSA policies decisions are taken at each new event
(a packet call arrival or departure) and thus depend not only
on the arrival rates (λ1, λ2) but also on the variations of
the number of users (n1, n2). In order to obtain a simple
heuristic, we focus only on the arrival rates and neglect the
variations of (n1, n2).

Let us now consider that (m1, m2) is fixed for a given cou-
ple (λ1, λ2). In this case, each of the RANs can be considered
as a M/M/1/nmax

i system. The service rate µi is indeed con-
stant (see Equation (1)) and in every state ni, the departure
rate is µi = ni × µi/ni because of the throughput fairness
scheduling assumption.

With these assumptions, the average heuristic reward for
the operator, gH , can be easily computed for all possible
combinations of allocated bands (m1, m2), along with the
corresponding λi values. The average reward is the sum of
the rewards obtained from the two RANs. For a given (λ1,
λ2, m1, m2)

gH (λ1, λ2, m1, m2) =
2∑

i=1

nmax
i∑

ni=0

πni (λi)niφi(ni, mi)

− g2(n1, m1, n2, m2), (5)

where the πni (λi), i ∈ {1, 2}, ni ∈ {0, ..., nmax
i } are the

steady state probabilities of a M/M/1/nmax
i with arrival rate

λi and service rate µi. We use this result for the proposed
DSA heuristic:

Algorithm 2 Heuristic DSA
1: Estimate arrival rates λ1 and λ2.
2: for all (m1, m2) do
3: Compute the average reward gH according to Equa-

tion (5).
4: end for
5: Allocate bandwidth according to the tuple (m1, m2) that

maximises the average reward gH .

Equation (5) can be instantaneously computed for realis-
tic values of the nmax

i and can be easily extended to several

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:694–703
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cells. Note that this proposed heuristic algorithm still need
the knowledge of several system parameters, such as λ1, λ2,
µ1, µ2 and XON, which cannot be always easily obtained by
the operator. We now propose an alternative solution based
on QL in order to overcome this limitation.

5. Q-LEARNING BASED DSA

5.1. Reinforcement learning

Reinforcement learning (RL) is a simulation-based dynamic
programming technique used to solve complex Markov De-
cision Problems (MDPs) without the need of knowing the
transition probabilities. RL is concerned about learning how
to take an action that maximises a specific metric, typically
long-term rewards. The algorithm trains an agent to take
the appropriate action in response to the environment re-
actions. The agent learns by analysing its actions through
the evaluation of the received rewards (for each action it
takes). In RL, the agent/environment interactions are usu-
ally modelled by an MDP [17, 18]. In this paper, we are
going to use the QL technique that solves a MDP using the
value-iteration method.

5.2. Q-learning for continuous average-cost problem

In QL, the agent learns the action-value function with the
target of determining a policy that maximises long-term re-
wards. The value function is a function (known as Q func-
tion) that gives the expected long-term reward obtained by
applying a certain policy. The Q function represents an eval-
uation of each action, taken by the agent, and associates it
with the environment-state at the moment of executing this
action.

Most approaches to RL, including QL, are developed to
optimise discrete discounted-reward problems. The origi-
nal QL algorithm presented by Watkins [19] was based on
discounted reward value iteration [20]. Discounted optimi-
sation is motivated by domains in which reward is money
that earns interest in each time step [17].

In case of average cost problems, QL does not apply
immediately. Setting the discount factor to 1 in the QL
algorithm would be equivalent to base the method on the
average cost value iteration, which is known to be unstable.
Using a high discount factor would cause the learning
convergence to be too slow. Authors of References [21]
and [17] have proposed RL algorithms that solve the
average cost problem. They are however designed for
discrete-time models. An interesting solution for both

average cost and continuous-time problems can be found in
Reference [20].

5.3. Gosavi algorithm

In this section we give the details of the Gosavi algorithm
[20] that we used to implement a QL-based DSA for our
average-reward continuous-time problem.

5.3.1. Q factors update. Like in the traditional QL algo-
rithm, the agent in state st takes an action at ; this causes the
system to move to state st+1; reward rt is observed and the
value of the action is denoted Q(st, at). The Q function (or
the Q-factor) is updated each time there is a state transition.
The action is then taken at the instant of a new event. The Q
function is updated formally, according to Reference [20],
as follows:

Q(st, at) = (1 − α)Q(st, at) + α rt − α ρδt

+ α arg max
a∈A(s)

{Q(st+1, a)} (6)

where α is a learning factor, ρ is the estimated average-
reward and rt denotes the reward obtained upon spending a
period δt in state st .

Figure 3, gives an illustration of the Q-factor updating
principle, along with the instants where the actions are ex-
ecuted, as implemented in our simulator.

The algorithm’s main idea is a relative value iteration
update. At every state-transition instant, the agent up-
dates the old Q-factor according to the new information.
When the system visits a state, the agent selects the action
with the highest rewards, this is represented in the term
arg maxa∈A(s){Q(st+1, a)} in Equation (6)

Although average-reward value iteration is numerically
unstable, Gosavi’s algorithm uses a relative value-iteration
method. The relative value iteration method differs by sub-
tracting some value (δtρrt) from the Q-factor.

Figure 3. Illustration of the Q-value updating principle in our
system-model context.

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:694–703
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5.3.2. Exploration–exploitation policy. In this paper, we
use a p-greedy method to explore and exploite: with a proba-
bility p, the agent chooses a random action among the given
set of authorised actions, and with a probability 1 − p, the
agent exploits the Q-factors.

5.3.3. Learning factors. In case the agent chooses to ex-
ploit the Q-factors, he updates the estimated average-reward
ρ, using a decreasing (and a second) learning factor β. The
parameter ρ is updated as follows:

(1) The estimated total reward C is updated as

C ← (1 − β)C + βrt (7)

(2) The estimated total time T is updated as

T ← (1 − β)T + βδt (8)

(3) Parameter ρ is updated as

ρ = C

T
(9)

The Gosavi algorithm is thus a two time-scales QL algo-
rithm, the average cost is approximated on one time scale
and the Q-factor on the other [20].

Two learning factors on two time scales are used. Both
of them decrease as the algorithm runs. The learning fac-
tor α depends on the number of times the state-action pair
was tried until that decision epoch. The learning factor β

depends on the number of decision epochs in which the
Q-factors have been exploited.

In order to compare this approach to other DSA policies,
we first launch the algorithm during a learning phase dur-
ing which we use the exploration–exploitation policy and
two decreasing learning factors (α and β). By the end of
the learning phase, the QL algorithm provides us with the
output policy. We then calculate analytically the average
reward knowing the policy provided by the QL algorithm.
The details of the algorithm are given in Algorithm 3.

6. PERFORMANCE EVALUATION

In this section, we compare the results obtained with optimal
DSA policies, the proposed heuristic, the QL-based DSA
and FSA in terms of operator reward, CAB utilisation and
average user throughput.

Algorithm 3 Q-learning based DSA
1: Initialise the following parameters:! the initial state: st = (0, 0, 1, 1).! Q-factors: Q(s, a) = 0, ∀s ∈ S and a ∈ A(s).! the estimated total cost: C = 0.! the estimated average reward: ρ is set to average

reward obtained with the heuristic DSA.! the number of times Q is exploited: k = 0.! the number of visits to the state-action pair (s, a):
Nv(s, a) = 0, ∀s ∈ S and a ∈ A(s).

2: repeat
3: Exploration-exploitation policy: draw uniform

random variable X on [0, 1].
4: if X < p (exploration) then
5: Choose action at at random
6: else
7: Choose action at that maximises Q(st, a) on the

set of actions in state st .
8: Update learning factors α = 1/(1 + Nv(s, a)) and

β = 1/(1 + k).
9: Update Q(st, at) according to Equation (6).

10: Update the estimated average reward ρ according
to Equation (7), (8) and (9).

11: k ← k + 1.
12: end if
13: Nv(st, at) ← Nv(st, at) + 1.
14: st ← st+1.
15: t ← t + 1.
16: until End of the learning period

6.1. Parameters

The CAB is assumed to have a size of 6 MHz, the ele-
mentary band (mi = 1) has a size of 1 MHz and mcom =
4 MHz. For the sake of simplicity, we assume that both
RANs have the same characteristics: the average cell data
rates Di are considered to be 1250 Kbps, XON = 3 Mbits,
λ1 = λ2 = λ and nmax

1 = nmax
2 = 8. The pricing constants

are fixed as follows: Ku = 100 euros, KB = 1 euro and
µcom = 0.167 s−1(which corresponds to a comfort through-
put of 500 Kbps).

Concerning the QL-based DSA algorithm, the agent
keeps learning (and updating the Q-factors) for 200 thou-
sands events, and the results are averaged over 20 iterations.

6.2. Arrival rate thresholds for heuristic DSA

For the considered parameter set, Figure 4 shows the av-
erage reward gH (see Equation (5)) as a function of the

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:694–703
DOI: 10.1002/ett



DSA POLICIES FOR CELLULAR NETWORKS 701

0 0.5 1 1.5 2 2.5 3
−200

0

200

400

600

800

1000

arrival rate λ per RAN (s−1)

M
ea

n 
re

w
ar

d 
pe

r t
im

e 
un

it

(m1, m 2) = (3,3)

(m1, m 2) = (2,2)

(m1, m 2) = (1,1)

(m1, m 2) = (1,4)

(m1, m 2) = (5,1)

(m1, m 2) = (4,2)

λ = 1.44 s −1

λ = 0.7333 s −1

Figure 4. Operator reward obtained for different allocated bands
combinations and load thresholds for heuristic DSA.

arrival rate λ for different combinations of the allocated
bands.

We can notice that the (m1, m2) values that give the max-
imum reward are: (1,1), (2,2) and (3,3) depending on the
arrival rate λ. The maximum reward can then be obtained
by dynamically allocating symmetric numbers of elemen-
tary bands to the RANs according to the cell load. This result
was expected since in this simulation λ1 = λ2. Threshold
values for λ are given on Figure 4.

6.3. Convergence of the QL-based DSA

We illustrate in this section the convergence of the QL-based
DSA algorithm through a study on the estimated average re-
ward ρ. Figure 5 represents the convergence of the estimated
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Figure 5. Convergence of the estimated average reward ρ for
Q-learning based DSA.
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Figure 6. Operator reward obtained with optimal DSA, heuristic
DSA, QL-based DSA and FSA.

average reward ρ as a function of the number of events for
two different arrival rates, λ = 0.2 and λ = 1.5 s−1.

We can notice that the value of ρ fluctuates at the be-
ginning of the learning phase and starts to stabilise after
a certain duration (i.e. number of events). The duration re-
quired for ρ to stabilise is the period equivalent to about 200
thousands events in our examples. Note that the QL algo-
rithm theoretically converges to the optimal policy after an
infinite duration. In our simulations, we stop learning after
a realistic duration (200 thousands events) and exploit the
obtained policy.

6.4. Operator reward, CAB utilisation, user
throughput

Figure 6 compares operator rewards obtained, respectively,
with optimal DSA policy, the proposed heuristic, the QL-
based DSA and FSA. By definition, FSA allocates mi = 3
elementary bands to each RAN whatever the system state.
It can be seen that optimal policies provide significant in-
creases of the reward for low to intermediate values of λ

(for example +229 per cent at λ = 0.5 s−1). At high load,
FSA and optimal DSA policy converge as expected. Both
the proposed heuristic and the QL-based DSA provide the
optimal reward at low load and converges also to FSA at
high load: only for intermediate values of λ, there is a small
degradation of the reward (for example, −21 per cent at
λ = 0.7 s−1 for the heuristic method).

Figure 7 gives a comparison of the reward gains, in per-
centage, for the proposed DSA methods with respect to the
rewards obtained using FSA.

We can notice that the three proposed methods achieve
gain in terms of rewards over FSA for arrival rate values

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:694–703
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Figure 7. Reward gain with respect to FSA for optimal DSA,
heuristic DSA and QL-based DSA.

λ < 2 s−1. All the proposed DSA methods give rewards
that converge to the same reward values as FSA for arrival
rates λ > 2 s−1.

These results can be explained by a better utilisation of
the sepctrum. CAB utilisation is illustrated in Figure 8 as a
function of the arrival rate λ. Optimal DSA policy smoothly
increases the CAB utilisation as arrival rate increases. The
proposed heuristic follows this trend with a step function.
QL-based DSA, although a bit less efficient, has a similar
behaviour. It is worth mentioning the DSA gain in terms of
spectral resource usage with respect to FSA.

To explain the difference between the heuristic DSA
and the QL-based method, it is worth mentioning that the
heuristic method needs to know all the networks parame-
ters, such as λ, XON and Di, unlike the case of the QL-based
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Figure 8. CAB utilisation with optimal DSA, heuristic DSA, QL-
based DSA and FSA.
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Figure 9. Average user throughput with optimal DSA, heuristic
DSA, QL-based DSA and FSA.

algorithm. The fact that QL-based DSA is below the optimal
DSA in terms of performance is explained by the fact that
the learning phase is voluntary limited to a realistic duration.

Operator reward and better spectrum utilisation with the
three proposed approaches are, however, obtained at the
price of a degradation of the average user throughput. Fig-
ure 9 illustrates the average user throughput as a function of
the RANs load λ. Optimal DSA policy, the proposed heuris-
tic and the QL-based DSA again show similar results.

The observed variations of the heuristic DSA between
λ = 0.5 and 1.5 s−1 can be explained by the changes of
resource allocation at threshold values 0.73 and 1.44 s−1

(see Figure 4).
The achieved average user throughput with FSA is how-

ever much higher, especially at low loads. According to the
traffic assumptions (see Section 2.2), a single user is indeed
allowed to take advantage of the whole bandwidth allocated
to a RAN. At low loads, FSA allocates 3 MHz to each RAN,
while DSA methods allocates only 1 MHz leading to lower
user throughputs. Our assumptions represent thus a worst
case scenario; a terminal or service limitation in maximum
data rate would reduce the advantage of FSA at low loads.

7. CONCLUSION

In this paper, we have studied DSA in cellular networks
context. We have used the SMDP framework to derive opti-
mal DSA policies in terms of the operator reward. We have
proposed two methods to defeat the generalisation diffi-
culty of the optimal policies over realistic systems: a simple
heuristic DSA method and a QL-based DSA algorithm. The

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:694–703
DOI: 10.1002/ett



DSA POLICIES FOR CELLULAR NETWORKS 703

achieved reward using the heuristic DSA gives a very close
reward to the optimal obtained by SMDP and thus signifi-
cantly exceeds the reward obtained with FSA. The obtained
reward using the QL-based has shown its gain over reward
achieved using FSA. Although less gain is achieved using
QL-based DSA, however the algorithm does not need to
know the networks parameters. Operator revenue increases
but better spectrum utilisation is obtained at the price of a
user throughput degradation.
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