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Abstract

In this paper, we tackle the problem of opportunistic spectrum access in large-

scale cognitive radio networks, where the unlicensed Secondary Users (SU) ac-

cess the frequency channels partially occupied by the licensed Primary Users

(PU). Each channel is characterized by an availability probability unknown to

the SUs. We apply population game theory to model the spectrum access prob-

lem and develop distributed spectrum access policies based on imitation, a be-

havior rule widely applied in human societies consisting of imitating successful

behaviors. We develop two imitation-based spectrum access policies based on

the basic Proportional Imitation (PI) rule and the more advanced Double Imi-

tation (DI) rule given that a SU can only imitate the other SUs operating on the

same channel. A systematic theoretical analysis is presented for both policies on

the induced imitation dynamics and the convergence properties of the proposed

policies to the Nash Equilibrium. Simple and natural, the proposed imitation-

based spectrum access policies can be implemented distributedly based on solely

local interactions and thus is especially suited in decentralized adaptive learning
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environments as cognitive radio networks.

Keywords: cognitive radio networks, resource allocation, population game,

learning

1. Introduction

Cognitive radio [1], with its capability to flexibly configure its transmission

parameters, has emerged in recent years as a promising paradigm to enable more

efficient spectrum utilization. Spectrum access models in cognitive radio net-

works can be classified into three categories, namely exclusive use (or operator

sharing), commons and shared use of primary licensed spectrum [2]. In the last

model, unlicensed secondary users (SU) are allowed to access the spectrum of li-

censed primary users (PU) in an opportunistic way. In this case, a well-designed

spectrum access mechanism is crucial to achieve efficient spectrum usage.

In this paper, we focus on the generic model of cognitive networks consist-

ing of multiple frequency channels, each characterized by a channel availability

probability determined by the activity of PUs on it. In such a model, from

the SUs perspective, a challenging problem is to coordinate with other SUs in

order to opportunistically access the unused spectrum of PUs to maximize its

own payoff (e.g., throughput); at the system level, a crucial research issue is

to design efficient spectrum access protocols achieving optimal spectrum usage

and load balancing on the available channels.

We tackle the spectrum access problem in large-scale cognitive radio net-

works from an evolutionary game theoretic angle. We formulate the spectrum

access problem, show the existence of a Nash Equilibrium (NE) and develop

distributed spectrum access policies based on imitation, a behavior rule widely

applied in human societies consisting of imitating successful behavior. We study

the system dynamics and the convergence of the proposed policies to the NE
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when the SU population is large. Simple and natural, the proposed spectrum ac-

cess policies can be implemented distributedly based on solely local interactions

and thus is especially suited in decentralized adaptive learning environments as

cognitive radio networks.

In our analysis, we develop imitation-based spectrum access policies where

a SU can only imitate the other SUs operating on the same channel. More

specifically, we propose two spectrum access policies based on the following two

imitation rules: the Proportional Imitation (PI) rule where a SU can sample

one other SU; the more advanced adjusted proportional imitation rule with

double sampling (Double Imitation, DI) where a SU can sample two other SUs.

Under both imitation rules, each SU strives to improve its individual payoff by

imitating other SUs with higher payoff. A systematic theoretical analysis is pre-

sented for both policies on the induced imitation dynamics and the convergence

properties of the proposed policies to the NE.

The key contribution of our work in this paper lies in the systematical appli-

cation of the natural imitation behavior to address the spectrum access problem

in cognitive radio networks, the design of distributed imitation-based channel

access policies, and the theoretic analysis on the induced imitation dynamics and

the convergence to an efficient and stable system equilibrium. In this paper, we

extend the results of [3], where it is assumed that SUs are able to immediately

and uniformly imitate any other SU. This assumption makes the theoretical

analysis straightforward from the literature on imitation. We assume here that

SUs can only imitate SUs on the same channel and obtain a delayed informa-

tion, as a result of which significant changes should be done in terms of policy

design and theoretical analysis.

The rest of the paper is structured as follows. Section 2 discusses related

work in the literature. Section 3 presents the system model and Section 4
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presents the formulation of the spectrum access game. Section 5 describes the

proposed imitation-based spectrum access policies and motivates the choices of

proportional and double imitation rules as basis of our policies. In Section 6, we

study the system dynamics and the convergence of our algorithms. Section 7

discusses the assumptions of our network model. Section 8 presents simula-

tion based performance evaluation, where our schemes are compared to another

decentralized approach called Trial and Error. Section 9 concludes the paper.

2. Related Work

The problem of distributed spectrum access in cognitive radio networks

(CRN) has been widely addressed in the literature. A first set of papers as-

sumes that the number of SUs is smaller than the number of channels. In this

case, the problem is closely related to the classical Multi-Armed Bandit (MAB)

problem [4]. Some recent work has investigated the issue of adapting tradi-

tional MAB approaches to the CRN context, among which Anandkumar et al.

proposed two algorithms with logarithmic regret, where the number of SUs is

known or estimated by each SU [5]. Contrary to this literature, we assume in

our paper a large population of SUs, able to share the available bandwidth when

settling on the same channel.

Another important thrust consists of applying game theory to model the

competition and cooperation among SUs and the interactions between SUs and

PUs (see [6] for a review). Several papers propose for example algorithms based

on no-regret learning (e.g. [7, 8]), which are not guaranteed to converge to the

NE. Besides, due to the perceived fairness and allocation efficiency, auction

techniques have also attracted considerable research attention and resulted in

a number of auction-based spectrum allocation mechanisms (cf. [9] and refer-

ences therein). The solution proposed in this paper differs from the existing
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approaches in that it requires only local interactions among SUs and is thus

naturally adapted in the distributed environments as CRNs.

Due to the success of applying evolutionary [10] and population game theo-

ries [11] in the study of biological and economic problems [11], a handful of re-

cent studies have applied these tools to study resource allocation problems arisen

from wired and wireless networks (see e.g. [12, 13]), among which Shakkottai et

al. addressed the problem of non-cooperative multi-homing of users to WLANs

access points by modeling it as a population game [14]. Authors however fo-

cus on the system dynamics rather than on the distributed algorithms as we

do in this paper. Niyato et al. studied the dynamics of network selection in

a heterogeneous wireless network using the theory of evolutionary game [15].

The proposed algorithm leading to the replicator dynamics is however based on

a centralized controller able to broadcast to all users the average payoff. Our

algorithms are on the contrary fully distributed. Coucheney et al. studied the

user-network association problem in wireless networks with multi-technology

and proposed an algorithm based on trial and error mechanisms to achieve the

fair and efficient solution [13].

Several theoretical works focus on imitation dynamics. Ackermann et al.

investigated the concurrent imitation dynamics in the context of finite popula-

tion symmetric congestion games by focusing on the convergence properties [16].

Berenbrik et al. applied the Proportional Imitation Rule to load-balance sys-

tem resources by focusing on the convergence speed [17]. Ganesh et al. applied

the Imitate If Better rule1 (see [19] for a review on imitation rules) in order to

load-balance the service rate of parallel server systems [18]. Contrary to our

work, it is assumed in [17] and [18] that a user is able to observe the load of

1Imitate If Better (IIB) is a rule consisting in picking a player and migrating to its strategy
if the latter has yielded a higher payoff than the achieved one. IIB is called Random Local
Search in [18]
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another resource before taking its decision to switch to this resource.

As it is supposed to model human behavior, imitation is mostly studied

in economics. In the context of CRN, specific protocol or hardware constraints

may however arise so that imitation dynamics are modified, as we show it in this

paper. Two very recent works in the context of CRN are [20] and [21], which

have the same goals as ours. In [20], authors propose a distributed learning

algorithm for spectrum access. User decisions are based on their accumulated

experience and they are using a mixed strategy. In [21], imitation is also used

for distributed spectrum access. However, the proposed scheme relies on the

existence of a common control channel for the sampling procedure. Double

imitation is moreover not considered.

3. System Model

In this section, we present the system model of our work with the notations

used.

3.1. System Model and PU Operation

We consider the network model shown on Fig. 1 made of a primary network

and a secondary network. In the former, a primary transmitter is using on the

downlink a set C of C frequency channels, each with bandwidth B. The primary

receivers are operated in a synchronous time-slotted fashion. The secondary

network is made of a set N of N SUs, which try to opportunistically access the

channels when they are left free by the PU. We assume that SUs can perform

a perfect sensing of PU transmissions, i.e., no collision can occur between the

PU and SUs. This assumption is adopted in the literature focusing on resource

allocation (see e.g. [22, 23, 5]). The secondary network is also supposed to be

sufficiently small so that every SU can receive and decode packets sent on the

same channel.
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Figure 1: Network model: N SUs try to opportunistically access the spectrum left free by a
PU. The spectrum is made of C slotted frequency channels.

Let Zi(k) be the random variable equal to 1 when of channel i is unoccupied

by any PU at slot k and 0 otherwise. We assume that the process {Zi(k)} is

stationary and independent for each i and k, i.e., the Zi(k) are i.i.d. random

variables for all (i, k). We also assume that at each time slot, channel i is free

with probability µi, i.e., E[Zi(k)] = µi. Without loss of generality, we assume

µ1 ≥ µ2 ≥ ... ≥ µC . The channel availability probabilities µ , {µi} are a priori

not known by SUs.

3.2. SU Operation

We describe in this section the SU operation and capabilities. As shown

in Fig. 2 for a given frequency channel j, time-slots of the primary network

are organized into blocks of Nb slots. All SUs are assumed to be synchronized,

stay on the same channel during a block and may change their channel at block

boundary. Let ni be the number of SUs operating on channel i.

Assuming perfect sensing of the cognitive users, there is no secondary trans-

mission during slots occupied by the PU (grey slots on the figure). When the

PU is idle, SUs share the available bandwidth using a decentralized random

access MAC protocol (hatched slots on the figure). The way this MAC protocol

is implemented is out of the scope of the paper. Mini-slots can for example be
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used at the beginning of each slot in order to perform CSMA, as assumed in [20],

or CSMA/CA can be used, as assumed in [24]. For mathematical convenience,

we will assume in Sections 5 and 6 that the MAC protocol is perfect and oper-

ates like TDMA. Our motivation of such an assumption is to concentrate the

analysis on the interactions between SUs and the resulting structural properties

of the system equilibria. The results give an upper-bound on the performance

of the developed policies. A similar asymptotic analysis has been carried on

in [25].

In our work, each SU j is modeled as a rational decision maker, striking

to maximize the throughput it can achieve, denoted as T ij when j operates on

channel i. Assuming a fair MAC protocol and invoking symmetry reasons, all

SUs on channel i obtain the same expected throughput, which can be expressed

as a function of ni as πi(ni) = E[T ij ] for all j operating on channel i. It should be

noted that πi(ni) depends on the MAC protocol implemented at the cognitive

users. An example is πi(ni) = Bµi/ni in the case of a perfect MAC protocol op-

erating like TDMA, where B is a constant standing for the channel bandwidth.

Generically, πi(ni) can be rewritten as πi(ni) = BµiS(ni) where S(ni) denotes

the throughput of a channel of unit bandwidth without PU. Without loss of gen-

erality, we will now assume that B = 1. The assumption that SUs on the same

channel obtain the same expected throughput can be found in the literature

using evolutionary game theory to study spectrum access, see e.g. [15, 26, 20].

Channel availabilities, µi, are estimated in the long term by SUs, while the

expected throughput πi and the number of SUs ni are estimated at the end of

each block. In all their transmissions in block b, SUs include in the header of

their packets the throughput πi(ni) obtained in block b−1 and the corresponding

channel (or strategy) i. We further assume that every SU can overhear at

random one or two packets transmitted by SUs on the same channel and decode
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Figure 2: SU operation: Nb slots of a frequency channel form a block, SUs use a MAC protocol
for their transmissions and include in the header of their packets a throughput and strategy
indication.

the throughput and strategy indications. The overhearing of packets is called

a sampling procedure and we write i  j when SU i samples SU j. Sampling

is supposed to be symmetric, i.e., the probabilities P (i  j) and P (j  i) are

identical. After the sampling, SU transmitters communicate to their receiver a

channel change order to be executed at the next block boundary.

4. Spectrum Access Game Formulation

To study the interactions among autonomous SUs and to derive distributed

channel access policies, we formulate in this section the channel selection prob-

lem as a spectrum access game where the players are the SUs and we show the

uniqueness of the Nash Equilibrium (NE) when the number of SUs is large. The

game is defined formally as follows:

Definition 1. The spectrum access game G is a 3-tuple (N , C, {Uj}), where N

is the player set, C is the strategy set of each player. Each player j chooses its

strategy sj ∈ C to maximize its payoff function Uj defined as Uj = πsj (nsj ) =

E[T
sj
j ].

The solution of the spectrum access game G is characterized by a Nash

Equilibrium [27], a strategy profile from which no player has incentive to deviate
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unilaterally.

Lemma 1. For the spectrum access game G, there exists at least one Nash

equilibrium.

Proof. Given the form of the SU payoff function, it follows from [28] that the

spectrum access game is a congestion game and a potential game with potential

function: P (n1, ..., nC) =
∑
i∈C
∑ni
k=1 πi(ni), where ni is the number of SUs on

channel i and
∑
i ni = N . This function takes only a finite set of values and

thus achieves a maximum value.

We now consider the population game G, where (1) the number of SUs is

large, (2) SUs are small, (3) SUs interact anonymously and (4) payoffs are

continuous (see [11] for the discussion on these assumptions). In this model, we

focus on the system state x , {xi, i ∈ C} where xi denotes the proportion of SUs

choosing channel i. In such context, by regarding xi as a continuous variable,

we make the following assumption on the throughput function S(xiN).

Assumption 1. S(xiN) is strictly monotonously decreasing and it holds that

S(xiN) ≤ 1/(Nxi).

We can now establish the uniqueness of the NE in the spectrum access game

G for the asymptotic case in the following lemma and theorem.

Lemma 2. For N sufficiently large, there is no empty channel at NE.

Proof. Assume, by contradiction, that at a NE, there are no SUs on channel

i. Since there are C channels, at a NE, there exists at least one channel where

there are at least N/C SUs. Assume that this channel is channel j, i.e., nj ≥

N/C. Consider a SU on channel j, its payoff is πj(nj) = µjS(N/C). From

Assumption 1, πj(nj) ≤ µjC/N . Now let a SU in channel j switch to channel

i, its payoff becomes πi(1) = µiS(1). It holds straightforwardly that πj(nj) <

πi(1) when N >
µjC
µiS(1) . Hence there is no empty channel at NE
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Theorem 1. For N sufficiently large, G admits a unique NE, where all SUs

get the same payoff. Let y denote the root of
∑
i∈C S

−1
(
y
µi

)
= N , at the NE,

there are S−1
(
y
µi

)
SUs operating on channel i.

Proof. This theorem is a classical result of population games. See Appendix A

for more details.

We can observe two desirable properties of the unique NE derived in Theo-

rem 1: (1) the NE is optimal from the system perspective as the total throughput

of the network achieves its optimum at the NE; (2) at NE, all SUs obtain exactly

the same throughput. Note that any state such that xi > 0 for all i ∈ C is also

system optimal, the NE is one of them. Note also that when N grows indefinitely

and as players are symmetric, the NE approaches the Wardrop equilibrium of

the system [29].

One critical challenge in the analyzed spectrum access game is the design of

distributed spectrum access strategies for rational SUs to converge to the NE.

In response to this challenge, we develop in the sequel sections of this paper an

efficient spectrum access policy.

5. Imitation-based spectrum access policies

The spectrum access policy we develop is based on imitation. As a behavior

rule widely observed in human societies, imitation captures the behavior of a

bounded rational player that mimics the actions of other players with higher pay-

off in order to improve its own payoff from one block to the next, while ignoring

the effect of its strategy on the future evolutions of the system and forgetting

its past experience. The induced imitation dynamics model the spreading of

successful strategies under imitation [30]. In this section, we develop two spec-

trum access policies based on the proportional imitation rule and the double
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imitation rule. For tractability reasons, we assume in the next sections that

πi(ni) = µi/ni on a channel i, i.e., a perfect MAC protocol for SUs.

5.1. Motivation

In this first part, we recall some useful definitions given in [30], we introduce

new notations and we provide our motivations.

Definition 2. A behavioral rule with single sampling (resp. with double sam-

pling) is a function F : C2 → ∆(C) (resp. F : C3 → ∆(C)), where ∆(C) is the set

of probability distributions on C and F ki,j, ∀i, j, k ∈ C (resp. F ki,j,l, ∀i, j, k, l ∈ C)

is the probability of choosing channel k in the next iteration (block) after oper-

ating on channel i and sampling a SU with strategy j (resp. sampling two SUs

with strategies j and l).

Definition 3. A behavioral rule with single sampling is imitating if F ki,j = 0

when k /∈ {i, j}. A behavioral rule with double sampling is imitating if F ki,j,l = 0

when k /∈ {i, j, l}.

In this paper, we assume that all SUs adopt the same behavioral rule, i.e.,

the population is monomorphic in the sense of Schlag [30] (see e.g. [31, 32, 33]

for other papers using this notion).

Schlag has shown in [30] that the proportional imitation rule (PIR) is an

improving rule, i.e., in any state of the system the expected average payoff is

increasing after an iteration of the rule. He has also shown that it is a dominant

rule, i.e., it always achieves a higher expected payoff improvement than any other

improving rule. PIR is moreover the unique dominant rule that never imitates

a strategy that achieved a lower payoff and that minimizes the probability of

switching among the set of dominant rules.

Schlag has also shown in [34] that the double imitation (DI) rule is the rule

that causes less SUs to change their strategy after each iteration among the set
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of improving behavioral rules with double sampling. As switching may repre-

sent a significant cost for today’s wireless devices in terms of delay, packet loss

and protocol overhead, this property makes PIR and DI particularly attractive.

These properties motivate the design of spectrum access policies based on PIR

and DI.

5.2. Spectrum Access Policy Based on Proportional Imitation

Algorithm 1 presents our proposed spectrum access policy based on the

proportional imitation rule, termed as PISAP. The core idea is: At each iteration

t, each SU (say j) randomly selects another SU (say j′) on the same channel; if

the payoff at t− 1 of the selected SU (denoted Uj′(t− 1)) is higher than its own

payoff at t− 1 (denoted Uj(t− 1)), the SU imitates the strategy of the selected

SU at the next iteration with a probability proportional to the payoff difference,

with coefficient the imitation factor σ2. The payoff and the strategy at t− 1 of

the sampled SU are read from the packet header.

Algorithm 1 PISAP: Executed at each SU j

1: Initialization: Set the imitation factor σ
2: At t = 0, randomly choose a channel to stay and store the payoff Uj(0).
3: while at each iteration t ≥ 1 do
4: Randomly select a SU j′

5: if Uj(t− 1) < Uj′(t− 1) then
6: Migrate to the channel sj′(t − 1) with probability p = σ(Uj′(t − 1) −

Uj(t− 1))
7: end if
8: end while

5.3. Spectrum Access Policy Based on Double Imitation

In this subsection, we turn to a more advanced imitation rule, the double

imitation rule [34] and propose the DI-based spectrum access policy, termed

2One way of setting σ is to set σ = 1/(ω−α), where ω and α are two exogenous parameters
such that Uj ∈ [α, ω], ∀j ∈ C. In our case, ω = 1 and α = 0 can be chosen.
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as DISAP. Under DISAP, each SU randomly samples two SUs on the same

channel by decoding two packet headers. It then imitates them with a certain

probability determined by the payoff differences. The spectrum access policy

based on the double imitation is detailed in Algorithm 2, in which each SU j

(with payoff Uj and strategy i at t − 1) randomly samples two other SUs j1

and j2 (operating at t− 1 on channel i1 and i2 respectively and, without loss of

generality, with utilities Uj1 ≤ Uj2) and updates the probabilities of switching

to channels i1 and i2, denoted as pj1 and pj2 respectively.

5.4. Discussion

As pointed in [34], double imitation may seem complicated compared to

the proportional imitation rule. We can however extract the following proper-

ties [34]: DI is an imitating rule, i.e., a SU never chooses a channel that is not

in his sample; switching probabilities are continuous in the sampled payoffs and

increase with payoff differences; for a joint sample with three different channels,

the most successful channel is chosen more likely; a SU never imitates another

SU that obtains a lower payoff.

Note that PISAP is clearly different from the proportional imitation rule

presented in [30] in the sense that a SU is not able to uniformly sample another

SU across the network. The radio constraint indeed forces it to sample a SU on

the same channel. As in this case, current strategies are identical, imitation is

based on the previous iteration.

If every SU is able to uniformly sample another SU in the network and to im-

itate the current strategy, the system dynamics is straightforward to obtain.It is

indeed shown e.g. in [35] that in the asymptotic case (assuming continuous time

for simplicity), the proportional imitation rule generates a population dynamics
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Algorithm 2 DISAP: Executed at each SU j.

1: Initialization: Set the parameters ω, α and σ = 1/(ω − α).
Define [A]+ , max{0, A} and Q(U) , 2− U−α

ω−α .
2: At t = 0 and t = 1, randomly choose a channel and store the payoff Uj(0).
3: while at each iteration t ≥ 2 do
4: Let i and Uj be resp. the channel and the payoff of j at t− 1.
5: Randomly sample two SUs j1 and j2 (with channels i1 and i2 and with

payoffs Uj1 and Uj2 resp. at t− 1). Suppose w.l.o.g. that Uj1 ≤ Uj2 .
6: if |{i, i1, i2}| = 1, i.e., i = i1 = i2 then
7: Go to channel i.
8: else if |{i, i1, i2}| = 2 then
9: if i = i1, i 6= i2 and Uj ≤ Uj2 then

10: pj2 = σ
2Q(Uj)(Uj2 − Uj).

Switch to channel i2 w.p. pj2 and go to channel i w.p. 1− pj2 .
11: else if i1 = i2, i 6= i1 and Uj ≤ Uj1 = Uj2 then
12: pj1 = σ

2 (Q(Uj1) +Q(Uj))(Uj1 − Uj).
Switch to channel i1 w.p. pj1 and go to channel i w.p. 1− pj1 .

13: end if
14: else if |{i, i1, i2}| = 3 then
15: if Uj ≤ Uj1 ≤ Uj2 then

16: pj1 = σ
2 [Q(Uj)(Uj1 − Uj2) +Q(Uj2)(Uj1 − Uj)]

+
.

pj2 = σ
2 [Q(Uj1)(Uj2 − Uj) +Q(Uj2)(Uj1 − Uj)]− pj1 .

Switch to channel i1 w.p. pj1 , to channel i2 w.p. pj2 and go to
channel i w.p. 1− pj1 − pj2 .

17: else if Uj1 ≤ Uj ≤ Uj2 then

18: pj2 = σ
2 [Q(Uj1)(Uj2 − Uj) +Q(Uj2)(Uj1 − Uj)]

+
.

Switch to channel i2 w.p. pj2 and go to channel i w.p. 1− pj2 .
19: end if
20: else
21: Go to channel i.
22: end if
23: end while
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described by the following set of differential equations:

ẋi(t) = σxi(t)[πi(t)− π(t)], ∀i ∈ C, (1)

where π ,
∑
i∈C xiπi denotes the expected payoff of all SUs in the network.

This equation can be easily solved as:

xi(t) =

(
xi(0)− µi∑

l∈C µl

)
e−(

∑
l∈C µl)σt +

µi∑
l∈C µl

, ∀i ∈ C. (2)

The imitation dynamics induced by PIR thus converges exponentially in time

to an evolutionary equilibrium, which is also the NE of G.

With the same assumption, the double imitation rule generates in the asymp-

totic case an aggregate monotone dynamics [34, 36], which is defined as follows:

ẋi =
xi

ω − α

[
1 +

ω − π
ω − α

]
(πi − π), ∀i ∈ C, (3)

whose solution is

xi(t) =

(
xi(0)− µi∑

l∈C µl

)
e−

π
ω−α (1+ω−π

ω−α )t +
µi∑
l∈C µl

, ∀i ∈ C. (4)

As a consequence, DI converges exponentially in time to the NE of the spectrum

access gameG, however at a higher rate than PIR because by definition σ = 1
ω−α

and ω and α being upper and lower bounds on payoffs, ω−π̄ω−α ≥ 0. From (2) and

(4), it turns out that the aggregate monotone dynamics is a time-rescaled version

of the replicator dynamics, as pointed in [10]. We will see in the next section

that both dynamics continue to play an important role in our model.

As desirable properties, the proposed imitation-based spectrum access poli-

cies (both PISAP and DISAP) are stateless, incentive-compatible for selfish

autonomous SUs and requires no central computational unit. The spectrum
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assignment is achieved by local interactions among autonomous SUs. The au-

tonomous behavior and decentralized implementation make the proposed poli-

cies especially suitable for large scale cognitive radio networks. The imitation

factor σ controls the tradeoff between the convergence speed and the channel

switching frequency in that larger σ represents more aggressiveness in imita-

tion and thus leads to fast convergence, at the price of more frequent channel

switching for the SUs.

6. Imitation Dynamics and Convergence

We have seen that proportional imitation and double imitation rules generate

a replicator dynamics and an aggregate monotone dynamics. In the sequel

analysis, we study the induced imitation dynamics and the convergence of the

proposed spectrum access policies PISAP and DISAP, which take into account

the constraint imposed by SU radios.

6.1. System Dynamics

In this subsection, we first derive in Theorem 2 the dynamics for a generic

imitation rule F with large population. We then derive in Lemma 3, Theorem 3

and Theorem 4 the dynamics of the proposed proportional imitation policy

PISAP and study its convergence. The counterpart analysis for the double

imitation policy DISAP is explored in Lemma 4, Theorem 5 and Theorem 6.

We start by introducing the notation used in our analysis. At an iteration,

we label all SUs performing strategy i (channel i in our case) as SUs of type

i and we refer to the SUs on sj as neighbors of SU j. We denote nli(t) the

number of SUs on channel i at iteration t and operating on channel l at t − 1.

It holds that
∑
l∈C n

l
i(t) = ni(t) and

∑
i∈C n

l
i(t) = nl(t − 1). For a given state

s(t) , {sj(t), j ∈ N} of the system at iteration t and for a finite population

of size N , we denote pi(t) , ni(t)/N the proportion of SUs of type i and
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pli(t) , n
l
i(t)/N the proportion of SUs migrating from channel l to i. We use x

instead of p to denote these proportions when N is large. It holds that p → x

when N → +∞.

Denote by F a generic imitation rule under the channel constraint. In the

case of a simple imitation rule (e.g. PISAP), F is characterized by the probabil-

ity set {F ij,k}, where F ij,k denotes the probability that a SU choosing strategy j

at the precedent iteration imitates another SU choosing strategy k at the prece-

dent iteration and then switches to channel i at next iteration after imitation.

Instead, by applying a double imitation rule (e.g. DISAP), we can characterize

F by the probability set {F ij,k,l}, where F ij,k,l denotes the probability that a

SU choosing strategy j at the precedent iteration imitates two neighbors choos-

ing respectively strategy k and strategy l at the precedent iteration and then

switches to channel i at the next iteration after imitation. In both cases the

only way to switch to a channel i is to imitate a SU that was on channel i. That

means F ij,k = 0, ∀k 6= i (PISAP) and F ij,k,l = 0, ∀k, l 6= i (DISAP).

At the initialization phase (iterations 0 and 1), each SU randomly chooses

its strategy with uniform distribution. In the asymptotic case, we thus have

∀i ∈ C, xi(0) > 0 and xi(1) > 0 a.s. After that, the system state at iteration

t + 1, denoted as p(t + 1) (x(t + 1) in the asymptotic case), depends on the

states at iteration t and t− 1.

We have now the following theorem that relates the finite and asymptotic

cases.

Theorem 2. For any imitation rule F , if the imitation among SUs of the same

type occurs randomly and independently, then ∀δ > 0, ε > 0 and any initial state

{x̃i(0)}, {x̃i(1)} such that ∀i ∈ C, x̃i(0) > 0 and x̃i(1) > 0, there exists N0 ∈ N

such that if N > N0, ∀i ∈ C, the event |pi(t)− xi(t)| > δ occurs with probability

less than ε for all t, where pi(0) = xi(0) = x̃i(0), pi(1) = xi(1) = x̃i(1). In the
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case of a simple imitation policy it holds that

xi(t+ 1) =
∑

j,l,k∈C

xlj(t)x
k
j (t)

xj(t)
F il,k ∀i ∈ C

Differently, a double imitation policy yields:

xi(t+ 1) =
∑

j,l,k,z∈C

xlj(t)x
k
j (t)xzj (t)

[xj(t)]2
F il,{k,z} ∀i ∈ C

Proof. The proof consists of first showing the theorem holds for iteration t = 2

and then proving the case t ≥ 3 by induction. The detail is in Appendix B.

Theorem 2 is a result on the short run adjustments of large populations

under any generic imitation rule F : the probability that the behavior of a large

population differs from the one of an infinite population is arbitrarily small when

N is sufficiently large. In what follows, we study the convergence of PISAP and

DISAP specifically.

6.2. PISAP Dynamics and Convergence

In this section, we now focus on PISAP and derive the induced imitation

dynamics in the following analysis.

Lemma 3. On the proportional imitation policy PISAP under channel con-

straint, it holds that

xji (t+ 1) =
∑
l,k∈C

xlj(t)x
k
j (t)

xj(t)
F il,k ∀i, j ∈ C. (5)

Proof. The proof is straightforward from the analysis in the proof of Theorem 2.
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Theorem 3. The proportional imitation policy PISAP under channel constraint

generates the following dynamics in the asymptotic case:

xi(t+ 1) = xi(t− 1) + σπi(t− 1)xi(t− 1)− σ
∑
j,l∈C

πl(t− 1)
xij(t)x

l
j(t)

xj(t)
(6)

where πi(t) denotes the expected payoff of an individual SU on channel i at

iteration t.

Proof. See Appendix C.

Although we are not able to prove it theoretically, we observe via extensive

numerical experiments that (6) converges to the NE. The formal proof is left

for future work. To get more in-depth insight on the dynamics (6), we notice

that under the following approximation:

∑
l∈C

πl(t− 1)
xlj(t)

xj(t)
≈ π̄(t− 1), (7)

where π̄(t− 1) is the average individual payoff for the whole system at iteration

t− 1, noticing
∑
j x

i
j(t) = xi(t− 1), (6) can be written as:

xi(t+ 1) = xi(t− 1) + σxi(t− 1)[πi(t− 1)− π̄(t− 1)]. (8)

Note that the approximation (7) states that in any channel j at iteration t, the

proportions of SUs coming from any channel l are representative of the whole

population.

Under the approximation (7), given the initial state {xi(0)}, {xi(1)}, we

can decompose (8) into the following two independent discrete-time replicator
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Figure 3: PISAP dynamics and its approxi-
mation by double replicator dynamics.
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dynamics:


xi(u) = xi(u− 1) + σxi(u− 1)[πi(u− 1)− π̄(u− 1)]

xi(v) = xi(v − 1) + σxi(v − 1)[πi(v − 1)− π̄(v − 1)],

(9)

where u = 2t, v = 2t + 1. The two equations in (9) illustrate the underlying

system dynamics hinged behind PISAP under the approximation (7): it can

be decomposed into two independent delayed replicator dynamics that alterna-

tively occur at the odd and even iterations, respectively. The following theorem

establishes the convergence of (9) to a unique fixed point, which is also the NE

of the spectrum access game G.

Theorem 4. Starting from any initial point, the system described by (9) con-

verges to a unique fixed point which is also the NE of the spectrum access game

G.

Proof. The proof, of which the detail is provided in Appendix D, consists of

showing that the mapping described by (9) is a contraction mapping.

As an illustrative example, Fig. 3 shows that the double replicator dynamics

provides an accurate approximation of the system dynamics induced by PISAP.
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6.3. DISAP Dynamics and Convergence

We now focus on DISAP and derive the induced imitation dynamics.

Lemma 4. On the double imitation policy DISAP under channel constraint, it

holds that

xji (t+ 1) =
∑

l,k,z∈C

xlj(t)x
k
j (t)xzj (t)

[xj(t)]2
F il,k,z ∀i, j ∈ C. (10)

Proof. The proof is straightforward from the analysis in the proof of Theorem 2.

Theorem 5. The double imitation policy DISAP under channel constraint gen-

erates the following dynamics in the asymptotic case:

xi(t+ 1) = xi(t− 1) +
∑
j

xij(t)Q(π̄j(t− 1))(πi(t− 1)− π̄j(t− 1)), (11)

where π̄j(t− 1) =
∑
k

xkj (t)

xj(t)
πk(t− 1) and Q(U) , 2− U−α

ω−α .

Proof. See Appendix E.

Again, we are not able to prove it analytically and leave the formal proof

as future work. However, we observe via extensive numerical experiments that

(11) converges to the NE and, as shown in Fig. 5, is also characterized by

a smoother and faster convergence with respect to the proportional imitation

dynamics (equation (6)).

By performing the approximation π̄j(t − 1) ≈ π̄(t − 1) for all j, (11) can be

written as:

xi(t+ 1) = xi(t− 1) + xi(t− 1)Q(π̄(t− 1))(πi(t− 1)− π̄(t− 1)). (12)
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Given the initial state {xi(0)}, {xi(1)}, we can now decompose (12) into the

following two independent discrete-time aggregate monotone dynamics:


xi(u) = xi(u− 1) + xi(u− 1)[2− π̄(u− 1)][πi(u− 1)− π̄(u− 1)]

xi(v) = xi(v − 1) + xi(v − 1)[2− π̄(v − 1)][πi(v − 1)− π̄(v − 1)],

(13)

where u = 2t, v = 2t+ 1. The underlying system dynamics can thus be decom-

posed into two independent delayed aggregate monotone dynamics that alterna-

tively occur at the odd and even iterations, respectively. The following theorem

establishes the convergence of (13) to a unique fixed point which is also the NE

of the spectrum access game G. The proof follows exactly the same analysis as

that of Theorem 4.

Theorem 6. Starting from any initial point, the system described by (13) con-

verges to a unique fixed point which is also the NE of the spectrum access game

G.

As an illustrative example, Fig. 4 shows that the double aggregate dynamics

provides an accurate approximation of the system dynamics induced by DISAP.

7. Discussion

This paper is a first step to systematically apply imitation rules to cognitive

radio networks. There are several points to be tackled in order to make the

model more realistic.

• It is assumed in this paper that a SU can capture another SU packet for

sampling with probability 1. Assuming a capture probability less than 1

would have the same effect as decreasing the value of σ in PISAP, i.e., it

would slow down the convergence speed of the proposed algorithms.
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• It is assumed that all SUs can all hear each other on the same channel. A

more realistic setting would consider a graph of possible communications

between SUs. In this case, our algorithms are not any more ensured to

converge. This point is left for further work. A promising approach is to

use the results of the literature on ’learning from neighbors’, which studies

the conditions under which efficient actions are adopted by a population

if agents receive information only from their neighbors (see e.g. [37]).

• In this paper, SUs are supposed to provide in their packet header the exact

average throughput that can be obtained on a given channel. We have

investigated in [24] the effect of providing only an estimate of the average

throughput. Assuming the use of CSMA/CA as SU MAC protocol, we

have shown by simulations that our algorithms continue to converge in

this more realistic context.

• For mathematical convenience, we have assumed in this paper that the SU

MAC protocol was perfect and could act as TDMA. Although unrealistic,

this approach gives an upper bound on the performance of our policies.

Also, the analysis can be extended with other more realistic MAC proto-

cols by adapting the utility functions. Particularly, we have investigated

in [24] the use of CSMA/CA and shown by simulations the convergence

of our policies.

• It is assumed that a generic PU transmits with a certain probability in

TDMA-like mode. If there are multiple PU transmitters it is possible to

distinguish two cases:

1. The transmission of each PU covers the totality of SU receivers. This

scenario boils down to the case of a unique generic PU transmitter.

2. The transmission of one or more PUs covers a sub-set of the SU re-
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ceivers. In this case, different SUs may have different perceptions of

the environment and a further analysis, based on the fact that the

channel availability probabilities are now dependent on both chan-

nel i and SU j, should be carried on. This point is left for future work.

8. Performance Evaluation

In this section, we conduct simulations to evaluate the performance of the

proposed imitation-based channel access policies (PISAP and DISAP) and de-

monstrate some intrinsic properties of the policies, which are not explicitly

addressed in the analytical part of the paper.

For performance comparison, we also show the results obtained by simu-

lating Trial and Error [38] (shortened into T&E in the following). The latter

has been chosen as it is, to the best of our knowledge, one of the best ex-

isting mechanisms that 1) applies to our model and 2) is guaranteed to con-

verge to a NE. In T&E, players locally implement a state machine, so that at

each iteration each player is characterized by a state, which is defined by the

triplet {current mood, benchmark mood, benchmark strategy}. Players cur-

rent mood (the four possible moods are: content, watchful, hopeful and discon-

tent) reflects the machine reaction to its experience of the environment. A NE

is reached when everybody is in state content.

8.1. Simulation Settings

We simulate two cognitive radio networks, termed Network 1 and Network 2.

We study the performance of our algorithms on Network 1, and compare their

convergence behaviors and fairness to the ones obtained by T&E on Network 2.

• Network 1: We consider N = 50 SUs, C = 3 channels characterized by

the availability probabilities µ = [0.3, 0.5, 0.8].
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• Network 2: We set N = 10, C = 2 and µ = [0.2, 0.8].

Note that the introduction of Network 2 has been necessary as the dynamics

induced by T&E turns out to be very slow to converge on the bigger Network 1

(after 105 iterations convergence is still not achieved).

We assume that the block duration is long enough, so that the SUs, regardless

of the occupied channel, can evaluate their payoff without errors. T&E learning

parameters (i.e., experimentation probability and benchmark mood acceptance

ratio) are set at each iteration according to [39].

8.2. System Dynamics

In Fig. 5, the trajectories described by (6) and (11) are compared. The first

part of the curves is characterized by important variations. This can be inter-

preted by the overlap of two replicator/aggregate monotone dynamics at odd

and even instants, as explained in Section 6. We observe that, in the asymp-

totic case, DISAP outperforms PISAP as it is characterized by less pronounced

wavelets and a faster convergence. However, both dynamics correctly converge

to an evolutionary equilibrium. It is easy to check that the converged equilib-

rium is also the NE of G and the system optimum, which confirms our theoretic

analysis. The dynamics presented in Fig. 5 are valid in an asymptotic case,

when the number of SUs is large. We now turn our attention to small size

scenarios.

8.3. Convergence with finite number of SUs

We study in this section the convergence of PISAP and DISAP on Network 1

(N = 50, C = 3). Fig. 6 and Fig. 7 show a realization of our algorithms. We

notice that an imitation-stable equilibrium is achieved progressively following

the dynamics characterized by (6) and (11). The equilibrium is furthermore

very close to the system optimum: we can in fact check that, according to
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Theorem 1, the proportion of SUs choosing channels 1, 2 and 3 at the system

optimum is 0.1875, 0.3125 and 0.5 respectively; in the simulation results we ob-

serve that there are 9, 16 and 25 SUs settling on channels 1, 2 and 3 respectively.

We also notice on this example that DISAP convergence is faster than PISAP

convergence.

We now focus on Network 2 (N = 10, C = 2) and compare T&E convergence

behavior (Fig. 8) to the trends of PISAP (Fig. 9) and DISAP (Fig. 10). It is

easy to notice that T&E converges in a much slower and more chaotic way with

respect to PISAP and DISAP. With T&E, the search of a NE may turn out

to be extremely long (in the realization depicted in Fig. 8, e.g., convergence

is achieved within 3.5 · 103 iterations). On the contrary, PISAP and DISAP

converge within 75 and 32 iterations respectively.

8.4. System Fairness

We now turn to the analysis of the fairness of the proposed spectrum access

policies. To this end, we adopt the Jain’s fairness index [40], which varies in [0, 1]

and reaches its maximum, when the resources are equally shared amongst users.

Fig. 11 and Fig. 12, whose curves represent an average over 103 independent

realizations on Network 2 of our algorithms and of T&E respectively, show

that PISAP and DISAP clearly outperform T&E in terms both of fairness and

convergence speed. In fact, while our system turns out to be very fair from the

early iterations, T&E needs 6 ·103 iterations to get its system to reach a fairness

value of 0.85. From Fig. 11, one can further infer that indeed DISAP converges

more rapidly than PISAP: for example, a fairness index of 0.982 is reached at

t = 100 by DISAP and at t = 200 by PISAP.

8.5. Switching Cost

At last, we concentrate on the switching frequency of the three algorithms

because switching may represent a significant cost for today’s wireless devices
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in terms of delay, packet loss and protocol overhead. In Fig. 13, we define the

switching cost at iteration t as the number of strategy switches between 0 and

t. After 200 iterations, the switching cost of DISAP and PISAP has stabilized

because convergence has been reached. On the contrary, T&E exhibits a fast

growing cost.

8.6. Imperfect observations of PU activity

We assumed so far that cognitive radio users observe the channel activity of

the primary user without errors. In this section, we investigate the performance

of the proposed algorithms when the PU activity is imperfectly observed by the

SUs. We denote by Pe the SU probability of error in detecting the PU activity

and by Qe the miss detection probability of an idle PU (probability of false

alarm). The expected value of the payoff experienced by SUs on channel i can

be written as follows:

E[πi(ni)] =

ni−1∑
m=0

(
ni − 1

m

)
(1−Qe)mQni−1−m

e (1−Qe)
µi

m+ 1
, (14)

which does not depend on Pe because a miss detection of the PU activity does

not affect the throughput of any SU.

We now want to evaluate the impact of Qe on the expected throughput es-

timates. To this end, we calculate the values taken by (14) for different values

of Qe and for different numbers of SUs. Results are shown in Fig. 14. Sur-

prisingly, we see that the estimates under sensing errors rapidly converge to

the values calculated for the ideal case with no miss detections (i.e., Qe = 0).

This is due to the fact that a trade-off arises. On the one hand, a SU, which

is unable to detect a free slot experiences a penalty in its throughput. On the

other hand, there are less SUs in average accessing free slots, which results in

a higher throughput. As shown in Fig. 14, the two effects counterweight when
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Figure 5: PISAP and DISAP system dynamics in the asymptotic case.
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Figure 6: PISAP on Network 1: number of
SUs per channel as a function of the number
of iterations.
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Figure 7: DISAP on Network 1: number of
SUs per channel as a function of the number
of iterations.

the number of SUs gets larger. Hence, one can infer that in practice the impact

of miss detections of the PU activity/inactivity is limited for a number of SUs

on the same channel greater than 5.
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iterations.
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SUs per channel as a function of the number
of iterations.
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Figure 10: DISAP on Network 2: number of
SUs per channel as a function of the number
of iterations.
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Figure 11: PISAP and DISAP on Network 1:
Jain’s fairness index as a function of the num-
ber of iterations (average over 103 realiza-
tions).
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Figure 13: Switching cost of PISAP, DISAP and T&E in Network 2.
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9. Conclusion and Further Work

In this paper, we address the spectrum access problem in cognitive radio

networks by applying population game theory and develop two imitation-based

spectrum access policies. In our model, a SU can only imitate the other SUs

operating on the same channel. This constraint makes the basic proportional

imitation and double imitation rules irrelevant in our context. These two imita-

tion rules are thus adapted to propose PISAP, a proportional imitation spectrum

access policy, and DISAP, a double imitation spectrum access policy. A system-

atic theoretical analysis is presented on the induced imitation dynamics and the

convergence properties of the proposed policies to the Nash equilibrium. Simu-

lation results show the efficiency of our algorithms even for small size scenarios.

It is also shown that PISAP and DISAP outperform Trial and Error in terms of

convergence speed and fairness. As an important direction of the future work,

we plan to investigate the imitation-based channel access problem in the more

generic multi-hop scenario where SUs can imitate their neighbors and derive the

relevant channel access policies.
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Appendix A. Proof of theorem 1

We first show that any point x = (xi)i∈C cannot be a NE if there exists i1 and

i2 such that πi1(Nxi1) < πi2(Nxi2). Otherwise, consider the strategy profile x′

where εN SUs move from channel i1 to i2. For N large and with sufficient small

ε, it follows from the continuity of πi(xi) that πi1(N(xi1− ε)) < πi2(N(xi2 + ε)),

which indicates that by switching from i1 to i2, one can increase its payoff. We

then proceed to show the second part of the theorem. To this end, let y denote

the payoff of any SU at the NE, we have: µiS(xiN) = y, ∀i ∈ C. It follows that

xiN = S−1
(
y
µi

)
. Noticing that

∑
i xi = 1, at the NE, we have:

∑
i∈C

S−1

(
y

µi

)
= N. (A.1)

Since a NE is ensured to exist, (A.1) admits at least a solution y. Moreover,

it follows from the strict monotonicity of S in Assumption 1 that its inverse
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function S−1 is also strictly monotonous. Hence (A.1) admits a unique solution.

We thus complete the proof.

Appendix B. Proof of theorem 2

We prove the statement for t = 2. The case for t ≥ 3 is analogous to [30],

which can be shown by induction and is therefore omitted.

Define the random variable wji (c) such that

wji (c) =


1 if SU c is on channel j at iteration t = 1

and migrates to channel i at t = 2

0 otherwise

. (B.1)

We now distinguish two cases: proportional and double imitation.

Appendix B.1. Proportional imitation

By definition, if j 6= sc(1), it holds that wji (c) = 0. Otherwise, c imitates with

probability
nksc(1)
nsc(1)

a SU that was using channel k at t = 0 and that is currently

(t = 1) on the same channel as c (sc(1)), and then migrates to channel i with

probability F isc(0),k. Note that we allow for self-imitation in our algorithm. At

initial states, all strategies are supposed to be chosen by at least one SU (N is

large), so that nsc(1) 6= 0. We thus have:

P[wji (c) = 1] =


0 if j 6= sc(1)∑
k∈C

nksc(1)

nsc(1)
F isc(0),k otherwise

. (B.2)

We can now derive the population proportions at iteration t = 2 as:

pji (2) =
1

N

∑
c∈N

wji (c) ∀i, j ∈ C. (B.3)
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The expectations of these proportions can now be written as (using the Kro-

necker delta δi,j):

E[pji (2)] =
1

N

∑
c∈N

P[wji (c) = 1] (B.4)

=
1

N

∑
c∈N ,k∈C

nksc(1)(1)F isc(0),kδj,sc(1)

nsc(1)(1)
(B.5)

=
1

N

∑
h,l,k∈C

nlh(1)nkh(1)F il,kδj,h

nh(1)
(B.6)

=
1

N

∑
l,k∈C

nlj(1)nkj (1)F il,k
nj(1)

(B.7)

=
∑
l,k∈C

x̃lj(1)x̃kj (1)

x̃j(1)
F il,k. (B.8)

It follows that

E[pi(2)] =
∑
j∈C

E[pji (2)] =
∑

j,l,k∈C

x̃lj(1)x̃kj (1)

x̃j(1)
F il,k. (B.9)

As wji (c) and wji (d) are independent random variables for c 6= d and since the

variance of wji (c) is less than 1, the variance of pji (2) and pi(2) for any i, j ∈ C are

less than 1/N and C/N , respectively. It then follows the Bienaymé-Chebychev

inequality that

∀i ∈ C,P[{|pi(2)− E[pi(2)]| > δ}] < C

(Nδ)2
. (B.10)

Choosing N0 such that C
(N0δ)2

< ε concludes the proof for t = 2. The proof

can then be induced to any t as in [30].

38



Appendix B.2. Double imitation

If j 6= sc(1), it holds that wji (c) = 0. Otherwise, c imitates with probability

nksc(1)
Nsc(1)

nzsc(1)
nsc(1)

two SUs that were using respectively channel k and channel z at

t = 0 and that are currently (t = 1) on the same channel as c (sc(1)), and then

migrates to channel i with probability F isc(0),k,z.

The proof follows in the steps of the proportional imitation and only the main

passages will be sketched out. We allow a SU to sample twice the same SU on

the channel, so that:

P[wji (c) = 1] =


0 if j 6= sc(1)∑
k,z∈C

nksc(1)

nsc(1)

nzsc(1)

nsc(1)
F isc(0),k,z otherwise.

(B.11)

We then derive the proportions expectations:

E[pji (2)] =
1

N

∑
c∈N

P[wji (c) = 1] (B.12)

=
1

N

∑
c∈N ,k,z∈C

nksc(1)(1)

nsc(1)(1)

nzsc(1)(1)

nsc(1)(1)
F isc(0),k,zδj,sc(1) (B.13)

=
∑

l,k,z∈C

x̃lj(1)x̃kj (1)x̃zj (1)

[x̃j(1)]2
F il,k,z. (B.14)

It follows that:

E[pi(2)] =
∑
j∈C

E[pji (2)] (B.15)

=
∑

j,l,k,z∈C

x̃lj(1)x̃kj (1)x̃zj (1)

[x̃j(1)]2
F il,k,z. (B.16)

The rest of the proof for the double imitation follows the same way as that of

proportional imitation.
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Appendix C. Proof of theorem 3

Recall the analysis in [30]. In this reference, equation (10) states that F ji,j =

F ij,i + σ[πj − πi]. We can now characterize {F il,k} for PISAP as:

F il,k =



0 if l, k 6= i

F li,l + σ[πi(t− 1)− πl(t− 1)] if k = i and l 6= i

1− F ik,i − σ[πk(t− 1)− πi(t− 1)] if l = i and k 6= i

1 if l = k = i

.

The above four equations state that: (1) If none of the involved channels is

i then the probability to switch to channel i is null (F is imitating); (2) The

switching probability is proportional to the payoff difference; (3) If a SU does

not imitate, it stays on the same channel; (4) If a SU imitates another SU with

the same strategy, its strategy is not modified. Equation (5) can now be written

as follows:

xji (t+ 1) =
∑
l 6=i

xlj(t)x
i
j(t)

xj(t)
(F li,l + σ[πi(t− 1)− πl(t− 1)])

+
∑
k 6=i

xij(t)x
k
j (t)

xj(t)
(1− F ii,k − σ[πk(t− 1)− πi(t− 1)]) +

xi2j
xj

=
∑
l 6=i

xlj(t)x
i
j(t)

xj(t)
(1 + σ[πi(t− 1)− πl(t− 1)]) +

xi2j
xj

=
∑
l 6=i

xlj(t)x
i
j(t)

xj(t)
σ[πi(t− 1)− πl(t− 1)] +

∑
l∈C

xlj(t)x
i
j(t)

xj(t)

= xij(t) +
∑
l∈C

xlj(t)x
i
j(t)

xj(t)
σ[πi(t− 1)− πl(t− 1)].

This concludes the proof.
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Appendix D. Proof of theorem 4

We prove the convergence of (9) by showing that the mapping described by

(9) is a contraction. A contraction mapping is defined [41] as follows: let (X, d)

be a metric space, f : X → X is a contraction if there exists a constant k ∈ [0, 1)

such that ∀x, y ∈ X, d(f(x), f(y)) ≤ kd(x, y), where d(x, y) = ||x − y|| =

maxi |xi − yi|. Such an f is called a contraction and admits a unique fixed

point, to which the mapping described by f converges.

Noticing that

d(f(x), f(y)) = ||f(x)− f(y)|| ≤
∣∣∣∣∣∣∣∣∂f∂x

∣∣∣∣∣∣∣∣ d(x, y), (D.1)

it suffices to show that the Jacobian

∣∣∣∣∣∣∣∣∂f∂x
∣∣∣∣∣∣∣∣ ≤ k. In our case, it suffices to show

that ||J ||∞ ≤ k, where J = (Jij)i,j∈C is the Jacobian of the mapping described

by one of the equation in (9), defined by Jij =
∂xi(u)

∂xj(u− 1)
.

Recall that πi = µi
Nxi

and π̄ =
∑
l
µl
N , (9) can be rewritten as:

xi(u) = xi(u− 1) + σ

[
µi
N
− xi(u− 1)

∑
l

µl
N

]
. (D.2)

It follows that

Jij =


1−

∑
l

µl
N

if j = i

0 otherwise

. (D.3)

Hence

||J ||∞ = max
i∈N

∑
j∈N
|Jij | = 1−

∑
l

µl
N

< 1, (D.4)

which shows that the mapping described by (9) is a contraction. It is further
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easy to check that the fixed point of (9) is x∗ = µi∑
l∈N µl

, which is also the

unique NE of G.

Appendix E. Proof of theorem 5

We start from the following equation (we skip the reference to time on the

right hand side after the first line for the sake of clarity):

xji (t+ 1) =
∑

l,k,z∈C

xlj(t)x
k
j (t)xzj (t)

[xj(t)]2
F il,k,z (E.1)

=
xij
x2
j

∑
k 6=i

xk2
j [F ii,k,k + F ik,i,k + F ik,k,i] +

xi2j
x2
j

∑
k 6=i

xkj [F ik,i,i + F ii,k,i + F ii,i,k] +

xij
x2
j

∑
k 6=i

∑
l/∈{k,i}

xljx
k
j [F ii,k,l + F ik,i,l + F ik,l,i] +

xi3j
x2
j

. (E.2)

The second equality can be understood as follows. F il,k,z 6= 0 only if at least

one of the indices l, k, or z is equal to i. The first sum of the right hand side

(RHS) is obtained when two indices are equal and different from i, the third

one is equal to i. The second sum is obtained when one index is different from

i and the two others are equal to i. The third sum is obtained when one index

is equal to i and the two others are different and different from i. The last term

corresponds to the case where all indices are equal to i (in this case, obviously,

F ii,i,i = 1). Now we have:

F ii,k,k + F ik,i,k + F ik,k,i = 2F ik,i,k + 1− F ki,k,k, (E.3)

F ik,i,i + F ii,k,i + F ii,i,k = F ik,i,i + 2(1− F ki,i,k), (E.4)

F ii,k,l + F ik,i,l + F ik,l,i = 1− F k,li,k,l + F il,i,k + F ik,i,l, (E.5)
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where F k,li,k,l = F ki,k,l + F li,k,l. Above, we used the fact that ∀(i, j, k, l), F li,j,k =

F li,k,j (i.e., there is no order in the sampling of two individuals) and F ii,k,l +

F ki,k,l + F li,k,l = 1 (i.e., with probability one, the SU goes to channel i, j or k at

the next iteration).

Moreover, we note that:

xij
x2
j

∑
k 6=i

xk2
j + 2xij

∑
k 6=i

xkj +
∑
k 6=i

∑
l/∈{k,i}

xljx
k
j + xi2j


=

xij
x2
j

∑
k

xk2
j + 2xij

∑
k 6=i

xkj +
∑
k 6=l

xljx
k
j − xij

∑
l 6=i

xlj − xij
∑
k 6=i

xkj


=

xij
x2
j

∑
k,l

xljx
k
j

= xij (E.6)

We used here the fact that
∑
k x

k
j = xj .

Equation (E.2) can now be written (we skip the reference to time on the

RHS, all xij are functions of t):

xji (t+ 1) = xij +
xij
x2
j

∑
k 6=i

xk2
j [2F ik,i,k − F ki,k,k] +

xi2j
x2
j

∑
k 6=i

xkj [F ik,i,i − 2F ki,i,k] +

xij
x2
j

∑
k 6=i

∑
l/∈{k,i}

xljx
k
j [F il,i,k + F ik,i,l − F

k,l
i,k,l]. (E.7)

We now use the following property of the double imitation [34]3 for i /∈ {j, k}:

F j,ki,j,k − F
i
j,i,k − F ik,i,j =

1

2
Q(πk(t− 1))(πj(t− 1)− πi(t− 1)) +

3In this reference, the equation (3) of Theorem 1 is wrong. The correct formula is however
given in the proof of the theorem in Appendix.
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1

2
Q(πj)(πk(t− 1)− πi(t− 1)). (E.8)

Payoffs π are functions of t−1 because imitation is based on the payoff obtained

at the previous iteration). In particular, for j = k, we obtain:

F ki,k,k − 2F ik,i,k = Q(πk(t− 1))(πk(t− 1)− πi(t− 1)). (E.9)

From these equations, we can simplify (E.7) into (skipping again reference to

time on the RHS):

xji (t+ 1) = xij +
xij
x2
j

∑
k

xk2
j Q(πk)(πi − πk) +

xi2j
x2
j

∑
k

xkjQ(πi)(πi − πk) +

xij
x2
j

∑
k

∑
l/∈{k,i}

xljx
k
jQ(πl)(πi − πk). (E.10)

The term in the last double summation has been obtained by using (E.8), sep-

arating the expression in two double sums and interchanging indices j and k in

the first double sum. Note also that all terms of the involved sums are null for

k = i.

We now obtain:

xji (t+ 1) = xij +
xij
x2
j

∑
k

xkj (πi − πk)

xkjQ(πk) + xijQ(πi) +
∑

l/∈{k,i}

xljQ(πl)

 ,
= xij + xij

∑
k

xkj
xj

(πi − πk)
∑
l

xlj
xj
Q(πl)

= xij + xijQ(π̄j)(πi − π̄j), (E.11)

where π̄j(t− 1) =
∑
k

xkj (t)

xj(t)
πk(t− 1) can be interpreted as the average payoff at
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the previous iteration of SUs settling now on channel j. We now have:

xi(t+ 1) =
∑
j

xji (t+ 1)

=
∑
j

[
xij(t) + xij(t)Q(π̄j(t− 1))(πi(t− 1)− π̄j(t− 1))

]
= xi(t− 1) +

∑
j

xij(t)Q(π̄j(t− 1))(πi(t− 1)− π̄j(t− 1)).

(E.12)

We used the fact that
∑
j x

i
j(t+ 1) = xi(t). This concludes the proof.
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